Join the conversation

Join the community of Machine Learners and AI enthusiasts.

Sign Up
m-ricย 
posted an update Jul 10
Post
3212
๐๐ž๐ฐ ๐๐ž๐œ๐จ๐๐ข๐ง๐  ๐ญ๐ž๐œ๐ก๐ง๐ข๐ช๐ฎ๐ž ๐ข๐ง ๐ญ๐ซ๐š๐ง๐ฌ๐Ÿ๐จ๐ซ๐ฆ๐ž๐ซ๐ฌ ๐ฌ๐ข๐ ๐ง๐ข๐Ÿ๐ข๐œ๐š๐ง๐ญ๐ฅ๐ฒ ๐ซ๐ž๐๐ฎ๐œ๐ž๐ฌ ๐ก๐š๐ฅ๐ฅ๐ฎ๐œ๐ข๐ง๐š๐ญ๐ข๐จ๐ง๐ฌ ๐Ÿ‘

DoLa decoding, which made a conference paper at ICLR '24, has just been merged in Transformers by @joaogante and Yung-Sung Chuang.
This new decoding method is simple yet extremely impressive!

Reminder: Decoder LLMs (the GPT kind of LLM, the most common one) generate their outputs one token at a time: at each step, given a current text, they compute a logit for each token in their vocabulary that should represent the probability of this token coming next.

Then they either pick the highest logit token (greedy decoding) or sample one with a probability defined by the logits (sampling).

The authors of DoLa wanted to improve that simple method.

They knew this established fact that transformer LMs encode low-level info (like base syntax) in early layers and more high-level info like knowledge in the later layers.

๐Ÿ’ก This gave them their key idea: During decoding, rather than picking the token with the highest logit, ๐˜„๐—ต๐˜† ๐—ป๐—ผ๐˜ ๐—ฝ๐—ถ๐—ฐ๐—ธ ๐˜๐—ต๐—ฒ ๐˜๐—ผ๐—ธ๐—ฒ๐—ป ๐˜„๐—ถ๐˜๐—ต ๐˜๐—ต๐—ฒ ๐—บ๐—ผ๐˜€๐˜ ๐—ถ๐—บ๐—ฝ๐—ฟ๐—ฒ๐˜€๐˜€๐—ถ๐˜ƒ๐—ฒ ๐—ถ๐—ป๐—ฐ๐—ฟ๐—ฒ๐—ฎ๐˜€๐—ฒ ๐—ถ๐—ป ๐—น๐—ผ๐—ด๐—ถ๐˜ ๐—ฎ๐—ฐ๐—ฟ๐—ผ๐˜€๐˜€ ๐—น๐—ฎ๐˜†๐—ฒ๐—ฟ๐˜€?

This gives impressive results:
๐Ÿš€ ๐Ÿฑ% - ๐Ÿฎ๐Ÿฌ% ๐—ฏ๐—ฎ๐˜€๐—ฒ ๐—ฝ๐—ผ๐—ถ๐—ป๐˜๐˜€ ๐—ถ๐—ป๐—ฐ๐—ฟ๐—ฒ๐—ฎ๐˜€๐—ฒ ๐—ฎ๐—ฐ๐—ฟ๐—ผ๐˜€๐˜€ ๐˜๐—ต๐—ฒ ๐—ฏ๐—ฒ๐—ป๐—ฐ๐—ต๐—บ๐—ฎ๐—ฟ๐—ธ๐˜€
๐Ÿš€ For instance on TruthfulQA / Open-ended, across all model sizes the increase in truthfulness is 14 base points, which is ๐—ฎ๐—ฟ๐—ผ๐˜‚๐—ป๐—ฑ ๐Ÿฐ๐Ÿฌ% ๐—ถ๐—บ๐—ฝ๐—ฟ๐—ผ๐˜ƒ๐—ฒ๐—บ๐—ฒ๐—ป๐˜ ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ฎ๐—ฟ๐—ฒ๐—ฑ ๐˜๐—ผ ๐˜€๐˜๐—ฎ๐—ป๐—ฑ๐—ฎ๐—ฟ๐—ฑ ๐—ฑ๐—ฒ๐—ฐ๐—ผ๐—ฑ๐—ถ๐—ป๐—ด!

๐Ÿค” Wouldn't decoding take longer because of this added contrasting step? ๐Ÿ‘‰ ๐—ง๐—ต๐—ฒ ๐—ฟ๐˜‚๐—ป๐˜๐—ถ๐—บ๐—ฒ ๐—ถ๐—ป๐—ฐ๐—ฟ๐—ฒ๐—ฎ๐˜€๐—ฒ ๐—ถ๐˜€ ๐—ป๐—ฒ๐—ด๐—น๐—ถ๐—ด๐—ถ๐—ฏ๐—น๐—ฒ, ๐Ÿญ ๐˜๐—ผ ๐Ÿด% ๐—ผ๐—ป๐—น๐˜†.

Paper added to my collection ๐Ÿ‘‰ m-ric/optimization-mechanics-661d543a5fc6ca1dc84284a0
This comment has been hidden

so how will we itilize the feature as this talk talk talk al the time with papers and no implementations !