Join the conversation

Join the community of Machine Learners and AI enthusiasts.

Sign Up
m-ric 
posted an update Sep 20
Post
1064
🧠 Stanford paper might be the key to OpenAI o1’s performance: What’s so effective about Chain of Thought? ⇒ it unlocks radically different sequential tasks!

💭 Reminder: A Chain of Thought (CoT) means that you instruct the model to “think step by step”. Often it’s literally just putting in the prompt “let’s think step by step.”

🤔 This method has been shown to be unreasonably effective to increase perf on benchmarks. However why it works so well remains unclear.

Here's the scoop: Transformers are amazing at parallel processing, but they've always struggled with tasks that require sequential reasoning.

⛔️ For instance if you ask them the result of 3^2^2^2^…, with 20 iterations, they’ll nearly always fail.

💡 Indeed, researchers prove mathematically, by assimilating transformers networks to logical circuits, that effectively they cannot solve sequential tasks that require more than a certain threshold of sequences.

But CoT enables sequential reasoning:

- 🧱 Each step in the CoT corresponds to simulating one operation in a complex circuit.
- 🔄 This allows the transformer to "reset" the depth of intermediate outputs, overcoming previous limitations.
- 🚀 Thus, with CoT, constant-depth transformers can now solve ANY problem computable by polynomial-size circuits! (That's a huge class of problems in computer science.)
- 🔑 Transformers can now handle tricky tasks like iterated squares (computing 3^2^2^2^2) composed permutations and evaluating circuits - stuff that requires serial computation.
- 📊 The improvement is especially dramatic for transformers with a limited depth. Empirical tests on four arithmetic problems showed massive accuracy gains with CoT on inherently serial tasks.

Main takeaway: Chain-of-thought isn't just a neat trick - it fundamentally expands what transformer models can do!

Read the paper 👉  Chain of Thought Empowers Transformers to Solve Inherently Serial Problems (2402.12875)
In this post