ppak10 commited on
Commit
2f936d3
·
verified ·
1 Parent(s): 80fb8f0

Trained model with classification head weights

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: distilbert/distilbert-base-uncased
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: defect-classification-distilbert-baseline-05-epochs
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # defect-classification-distilbert-baseline-05-epochs
18
+
19
+ This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.3466
22
+ - Accuracy: 0.8406
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 2e-05
42
+ - train_batch_size: 512
43
+ - eval_batch_size: 512
44
+ - seed: 42
45
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 5
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
53
+ | 0.6532 | 1.0 | 1062 | 0.5593 | 0.7704 |
54
+ | 0.5415 | 2.0 | 2124 | 0.4230 | 0.8107 |
55
+ | 0.5135 | 3.0 | 3186 | 0.3803 | 0.8271 |
56
+ | 0.5031 | 4.0 | 4248 | 0.3597 | 0.8346 |
57
+ | 0.4909 | 5.0 | 5310 | 0.3466 | 0.8406 |
58
+
59
+
60
+ ### Framework versions
61
+
62
+ - Transformers 4.47.0
63
+ - Pytorch 2.5.1+cu124
64
+ - Datasets 3.2.0
65
+ - Tokenizers 0.21.0