--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: defect-classification-distilbert-baseline-05-epochs results: [] --- # defect-classification-distilbert-baseline-05-epochs This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3466 - Accuracy: 0.8406 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 512 - eval_batch_size: 512 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6532 | 1.0 | 1062 | 0.5593 | 0.7704 | | 0.5415 | 2.0 | 2124 | 0.4230 | 0.8107 | | 0.5135 | 3.0 | 3186 | 0.3803 | 0.8271 | | 0.5031 | 4.0 | 4248 | 0.3597 | 0.8346 | | 0.4909 | 5.0 | 5310 | 0.3466 | 0.8406 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0