--- library_name: transformers license: apache-2.0 base_model: albert/albert-base-v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: albert-rating-regression-rob-dset results: [] --- # albert-rating-regression-rob-dset This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co/albert/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1105 - Accuracy: 0.5692 - Mse: 0.6352 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Mse | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 425 | 1.0055 | 0.5593 | 0.7025 | | 1.153 | 2.0 | 850 | 1.0727 | 0.5318 | 0.7066 | | 0.9044 | 3.0 | 1275 | 1.0269 | 0.5689 | 0.7080 | | 0.6813 | 4.0 | 1700 | 1.1105 | 0.5692 | 0.6352 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1