ppsingh commited on
Commit
0951ac0
1 Parent(s): 920f9c2

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: mpnet-adaptation_mitigation-classifier
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # mpnet-adaptation_mitigation-classifier
16
+
17
+ This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.2117
20
+ - Precision Micro: 0.9175
21
+ - Precision Weighted: 0.9181
22
+ - Precision Samples: 0.9256
23
+ - Recall Micro: 0.9281
24
+ - Recall Weighted: 0.9281
25
+ - Recall Samples: 0.9314
26
+ - F1-score: 0.9263
27
+ - Accuracy: 0.9082
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 8e-05
47
+ - train_batch_size: 8
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_steps: 200
53
+ - num_epochs: 1
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision Micro | Precision Weighted | Precision Samples | Recall Micro | Recall Weighted | Recall Samples | F1-score | Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------------:|:-----------------:|:------------:|:---------------:|:--------------:|:--------:|:--------:|
59
+ | 0.3291 | 1.0 | 1051 | 0.2117 | 0.9175 | 0.9181 | 0.9256 | 0.9281 | 0.9281 | 0.9314 | 0.9263 | 0.9082 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.28.1
65
+ - Pytorch 2.0.0+cu118
66
+ - Datasets 2.11.0
67
+ - Tokenizers 0.13.3