File size: 8,097 Bytes
53ee433 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import os
import json
from typing import Dict, List, Optional, Union, Tuple
from transformers.utils import logging
from sentencepiece import SentencePieceProcessor
from transformers.tokenization_utils import PreTrainedTokenizer
logger = logging.get_logger(__name__)
SPIECE_UNDERLINE = "▁"
SPECIAL_TAGS = {
"_bt_",
"_ft_",
"asm_Beng",
"awa_Deva",
"ben_Beng",
"bho_Deva",
"brx_Deva",
"doi_Deva",
"eng_Latn",
"gom_Deva",
"gon_Deva",
"guj_Gujr",
"hin_Deva",
"hne_Deva",
"kan_Knda",
"kas_Arab",
"kas_Deva",
"kha_Latn",
"lus_Latn",
"mag_Deva",
"mai_Deva",
"mal_Mlym",
"mar_Deva",
"mni_Beng",
"mni_Mtei",
"npi_Deva",
"ory_Orya",
"pan_Guru",
"san_Deva",
"sat_Olck",
"snd_Arab",
"snd_Deva",
"tam_Taml",
"tel_Telu",
"urd_Arab",
"unr_Deva",
}
VOCAB_FILES_NAMES = {
"src_vocab_fp": "dict.SRC.json",
"tgt_vocab_fp": "dict.TGT.json",
"src_spm_fp": "model.SRC",
"tgt_spm_fp": "model.TGT",
}
class IndicTransTokenizer(PreTrainedTokenizer):
_added_tokens_encoder = {}
_added_tokens_decoder = {}
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
src_vocab_fp=None,
tgt_vocab_fp=None,
src_spm_fp=None,
tgt_spm_fp=None,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>",
pad_token="<pad>",
do_lower_case=False,
**kwargs,
):
self.src = True
self.src_vocab_fp = src_vocab_fp
self.tgt_vocab_fp = tgt_vocab_fp
self.src_spm_fp = src_spm_fp
self.tgt_spm_fp = tgt_spm_fp
self.unk_token = unk_token
self.pad_token = pad_token
self.eos_token = eos_token
self.bos_token = bos_token
self.encoder = self._load_json(self.src_vocab_fp)
if self.unk_token not in self.encoder:
raise KeyError("<unk> token must be in vocab")
assert self.pad_token in self.encoder
self.encoder_rev = {v: k for k, v in self.encoder.items()}
self.decoder = self._load_json(self.tgt_vocab_fp)
if self.unk_token not in self.encoder:
raise KeyError("<unk> token must be in vocab")
assert self.pad_token in self.encoder
self.decoder_rev = {v: k for k, v in self.decoder.items()}
# load SentencePiece model for pre-processing
self.src_spm = self._load_spm(self.src_spm_fp)
self.tgt_spm = self._load_spm(self.tgt_spm_fp)
self.current_spm = self.src_spm
self.current_encoder = self.encoder
self.current_encoder_rev = self.encoder_rev
self.unk_token_id = self.encoder[self.unk_token]
self.pad_token_id = self.encoder[self.pad_token]
self.eos_token_id = self.encoder[self.eos_token]
self.bos_token_id = self.encoder[self.bos_token]
super().__init__(
src_vocab_file=self.src_vocab_fp,
tgt_vocab_file=self.src_vocab_fp,
do_lower_case=do_lower_case,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
**kwargs,
)
def add_new_special_tags(self, new_tags: List[str]):
SPECIAL_TAGS.update(new_tags)
def _switch_to_input_mode(self):
self.src = True
self.padding_side = "left"
self.current_spm = self.src_spm
self.current_encoder = self.encoder
self.current_encoder_rev = self.encoder_rev
def _switch_to_target_mode(self):
self.src = False
self.padding_side = "right"
self.current_spm = self.tgt_spm
self.current_encoder = self.decoder
self.current_encoder_rev = self.decoder_rev
def _load_spm(self, path: str) -> SentencePieceProcessor:
return SentencePieceProcessor(model_file=path)
def _save_json(self, data, path: str) -> None:
with open(path, "w", encoding="utf-8") as f:
json.dump(data, f, indent=2)
def _load_json(self, path: str) -> Union[Dict, List]:
with open(path, "r", encoding="utf-8") as f:
return json.load(f)
def _split_tags(self, tokens: List[str]) -> Tuple[List[str], List[str]]:
tags = [token for token in tokens if token in SPECIAL_TAGS]
tokens = [token for token in tokens if token not in SPECIAL_TAGS]
return tags, tokens
def _split_pads(self, tokens: List[str]) -> Tuple[List[str], List[str]]:
pads = [token for token in tokens if token == self.pad_token]
tokens = [token for token in tokens if token != self.pad_token]
return pads, tokens
@property
def src_vocab_size(self) -> int:
return len(self.encoder)
@property
def tgt_vocab_size(self) -> int:
return len(self.decoder)
def get_src_vocab(self) -> Dict[str, int]:
return dict(self.encoder, **self.added_tokens_encoder)
def get_tgt_vocab(self) -> Dict[str, int]:
return dict(self.decoder, **self.added_tokens_decoder)
# hack override
def get_vocab(self) -> Dict[str, int]:
return self.get_src_vocab()
# hack override
@property
def vocab_size(self) -> int:
return self.src_vocab_size
def _convert_token_to_id(self, token: str) -> int:
"""Converts an token (str) into an index (integer) using the source/target vocabulary map."""
return self.current_encoder.get(token, self.current_encoder[self.unk_token])
def _convert_id_to_token(self, index: int) -> str:
"""Converts an index (integer) into a token (str) using the source/target vocabulary map."""
return self.current_encoder_rev.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens: List[str]) -> str:
"""Uses sentencepiece model for detokenization"""
pads, tokens = self._split_pads(tokens)
if self.src:
tags, non_tags = self._split_tags(tokens)
return (
" ".join(pads)
+ " "
+ " ".join(tags)
+ " "
+ "".join(non_tags).replace(SPIECE_UNDERLINE, " ").strip()
)
return (
"".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
+ " "
+ " ".join(pads)
)
def _tokenize(self, text) -> List[str]:
if self.src:
tokens = text.split(" ")
tags, non_tags = self._split_tags(tokens)
text = " ".join(non_tags)
tokens = self.current_spm.EncodeAsPieces(text)
return tags + tokens
else:
return self.current_spm.EncodeAsPieces(text)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
if token_ids_1 is None:
return token_ids_0 + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_0 + [self.eos_token_id] + token_ids_1 + [self.eos_token_id]
def save_vocabulary(
self, save_directory: str, filename_prefix: Optional[str] = None
) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
src_spm_fp = os.path.join(save_directory, "model.SRC")
tgt_spm_fp = os.path.join(save_directory, "model.TGT")
src_vocab_fp = os.path.join(save_directory, "dict.SRC.json")
tgt_vocab_fp = os.path.join(save_directory, "dict.TGT.json")
self._save_json(self.encoder, src_vocab_fp)
self._save_json(self.decoder, tgt_vocab_fp)
with open(src_spm_fp, "wb") as f:
f.write(self.src_spm.serialized_model_proto())
with open(tgt_spm_fp, "wb") as f:
f.write(self.tgt_spm.serialized_model_proto())
return src_vocab_fp, tgt_vocab_fp, src_spm_fp, tgt_spm_fp |