pramodvadiraj commited on
Commit
2c3ce73
·
1 Parent(s): e3952a4

Upload first version of the Lunar-Lander trained using PPO

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 243.93 +/- 38.79
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe2af240670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe2af240700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe2af240790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe2af240820>", "_build": "<function ActorCriticPolicy._build at 0x7fe2af2408b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe2af240940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe2af2409d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe2af240a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe2af240af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe2af240b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe2af240c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe2af240ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe2af23d450>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673645825610656294, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAE2RaD7xYtY9rlIxvknwhr7u/Q87DNscPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMID7iumBFRakCUhpRSlIwBbJRNpwGMAXSUR0CkTreY+jdpdX2UKGgGaAloD0MIgSbChqc7UUCUhpRSlGgVS+RoFkdApFDNcQiA2HV9lChoBmgJaA9DCDMZjuczgCRAlIaUUpRoFUvqaBZHQKRRigsbvPV1fZQoaAZoCWgPQwgTRrOyfbAkQJSGlFKUaBVL52gWR0CkUjtLteD4dX2UKGgGaAloD0MIxF29igxKb0CUhpRSlGgVTSUBaBZHQKRTIT238XN1fZQoaAZoCWgPQwiXjc75aVRwQJSGlFKUaBVNRAFoFkdApFWcir1dxHV9lChoBmgJaA9DCJT3cTTHqW5AlIaUUpRoFU1iAWgWR0CkVrjlgc94dX2UKGgGaAloD0MI0CueeiRKbUCUhpRSlGgVTU0BaBZHQKRXrO4XoDB1fZQoaAZoCWgPQwjvG197ZgdPQJSGlFKUaBVL32gWR0CkWbpHAh0RdX2UKGgGaAloD0MIb4Jvmn6mcUCUhpRSlGgVTU8BaBZHQKRawRIz3yt1fZQoaAZoCWgPQwiRfvs6cP1tQJSGlFKUaBVNPQFoFkdApFu18NQTEnV9lChoBmgJaA9DCJw1eF+V1z5AlIaUUpRoFUvUaBZHQKRcT0Syt3h1fZQoaAZoCWgPQwirQC0Gj6lvQJSGlFKUaBVNQAFoFkdApF696qsEJXV9lChoBmgJaA9DCMdGIF7XgGtAlIaUUpRoFU1kAWgWR0CkX9qdYnv2dX2UKGgGaAloD0MI9YWQ836EbUCUhpRSlGgVTaMCaBZHQKRjoqaPS2J1fZQoaAZoCWgPQwiXrmAb8XdRQJSGlFKUaBVL/2gWR0CkZFHkLhJidX2UKGgGaAloD0MIFlCopw9ibkCUhpRSlGgVTRcBaBZHQKRlJTYukDZ1fZQoaAZoCWgPQwjVljrIKwpxQJSGlFKUaBVNGgFoFkdApGYAWFev6nV9lChoBmgJaA9DCIrpQqz+aDJAlIaUUpRoFUv1aBZHQKRoGOsDGLl1fZQoaAZoCWgPQwgKSPsfYD0cQJSGlFKUaBVL7GgWR0CkaMWnsLOSdX2UKGgGaAloD0MILAyR09cjH0CUhpRSlGgVTQ0BaBZHQKRpgNPP9k11fZQoaAZoCWgPQwhMiLmk6g1hQJSGlFKUaBVN6ANoFkdApG4okTpPh3V9lChoBmgJaA9DCMWM8PYgSETAlIaUUpRoFUvwaBZHQKRuy9nK4hF1fZQoaAZoCWgPQwjNdK+TeltuQJSGlFKUaBVNewFoFkdApHF1zQu27XV9lChoBmgJaA9DCNv4E5UNaxlAlIaUUpRoFU0QAWgWR0Ckci+otL+QdX2UKGgGaAloD0MIfsnGgy3PbECUhpRSlGgVTSkBaBZHQKRzBZkkKNR1fZQoaAZoCWgPQwikb9I0KK1fQJSGlFKUaBVN6ANoFkdApHhsp7TlT3V9lChoBmgJaA9DCLgFS3UBFUhAlIaUUpRoFUvdaBZHQKR6fD8cdYJ1fZQoaAZoCWgPQwh1sP7P4a5wQJSGlFKUaBVNQAFoFkdApHtvh0hePnV9lChoBmgJaA9DCIlBYOXQpENAlIaUUpRoFUvpaBZHQKR8FPjXFtN1fZQoaAZoCWgPQwgqO/2gLjhxQJSGlFKUaBVNVQNoFkdApIC4zzmOl3V9lChoBmgJaA9DCBghPNo4c3FAlIaUUpRoFU01AWgWR0CkgZhY/3WXdX2UKGgGaAloD0MI1zGuuPigfcCUhpRSlGgVTRQBaBZHQKSCZo7FKkF1fZQoaAZoCWgPQwhAUG7b9xRAwJSGlFKUaBVNLgFoFkdApIS24kNWl3V9lChoBmgJaA9DCIIBhA8lcHFAlIaUUpRoFU08AWgWR0CkhZxcNYr8dX2UKGgGaAloD0MIpRDIJY4Nb0CUhpRSlGgVTaIBaBZHQKSG4x33Ycx1fZQoaAZoCWgPQwg5DrxaLuNwQJSGlFKUaBVNJgFoFkdApIkxFmWdE3V9lChoBmgJaA9DCGv0aoBSXWtAlIaUUpRoFU1kAmgWR0Cki7XIMjNZdX2UKGgGaAloD0MIqoHmc244bUCUhpRSlGgVTXQBaBZHQKSOU4wyqMp1fZQoaAZoCWgPQwiBIECGjt1FQJSGlFKUaBVL5mgWR0Ckjwr/CIk7dX2UKGgGaAloD0MI6DOg3oyQcECUhpRSlGgVTUMBaBZHQKSQHlFtsN51fZQoaAZoCWgPQwjilLn5xhtxQJSGlFKUaBVNLgFoFkdApJJ6pzcRDnV9lChoBmgJaA9DCGpQNA/gIG9AlIaUUpRoFU1cAWgWR0Ckk4LzwtrcdX2UKGgGaAloD0MIrrt5qsNHb0CUhpRSlGgVTWsCaBZHQKSXEPlMh5h1fZQoaAZoCWgPQwhlVu9wO3QWQJSGlFKUaBVNFgFoFkdApJfb4k/r0XV9lChoBmgJaA9DCHjwEwcQrHBAlIaUUpRoFU1XAWgWR0CkmOT5O8CgdX2UKGgGaAloD0MIa+9TVWigC8CUhpRSlGgVTREBaBZHQKSZpsrNGEx1fZQoaAZoCWgPQwjMKmwGuC5tQJSGlFKUaBVNRgFoFkdApJv/gJkXlHV9lChoBmgJaA9DCFmnyveMH3BAlIaUUpRoFU1zAWgWR0CknSW/SH/MdX2UKGgGaAloD0MIhA8lWjIJcECUhpRSlGgVTYoDaBZHQKShtqveP7x1fZQoaAZoCWgPQwiemssNBhZiQJSGlFKUaBVN6ANoFkdApKbsGs3hoHV9lChoBmgJaA9DCDTY1HlUYWJAlIaUUpRoFU3oA2gWR0Ckq7mPo3aSdX2UKGgGaAloD0MIi4wOSMK0YkCUhpRSlGgVTegDaBZHQKSxeBnzxw11fZQoaAZoCWgPQwhjDoKO1oBjQJSGlFKUaBVN6ANoFkdApLaEnE2pAHV9lChoBmgJaA9DCCCXOPJAR2FAlIaUUpRoFU3oA2gWR0Cku7PUaybAdX2UKGgGaAloD0MIjSWsjbGmX0CUhpRSlGgVTegDaBZHQKTBOW9lEql1fZQoaAZoCWgPQwhSKuEJvXY3QJSGlFKUaBVLvGgWR0Ckwbg4ffXPdX2UKGgGaAloD0MItTNMbSnvY0CUhpRSlGgVTegDaBZHQKTG2bONYKZ1fZQoaAZoCWgPQwi8ICI1bTBiQJSGlFKUaBVN6ANoFkdApMxUhJRO13V9lChoBmgJaA9DCJyLv+0JqklAlIaUUpRoFUvnaBZHQKTM/uyeI2x1fZQoaAZoCWgPQwiJRQw7DBdtQJSGlFKUaBVNiwFoFkdApM/JbD/EO3V9lChoBmgJaA9DCEKxFTStPmFAlIaUUpRoFU3oA2gWR0Ck1NYGdI5HdX2UKGgGaAloD0MIt+7mqc5ke8CUhpRSlGgVTS4BaBZHQKTVuJO32El1fZQoaAZoCWgPQwjJqgg3GZ1iQJSGlFKUaBVN6ANoFkdApNyYX0oSc3V9lChoBmgJaA9DCEchyazeV2FAlIaUUpRoFU3oA2gWR0Ck4zEX1rZbdX2UKGgGaAloD0MInBTmPc4zZECUhpRSlGgVTegDaBZHQKToalImPYF1fZQoaAZoCWgPQwgxt3u5z71gQJSGlFKUaBVN6ANoFkdApO2lpj+aSnV9lChoBmgJaA9DCGGnWDWIq2JAlIaUUpRoFU3oA2gWR0Ck8yvRzBAOdX2UKGgGaAloD0MIJA7ZQLoY/D+UhpRSlGgVS+VoFkdApPPTxVhkRXV9lChoBmgJaA9DCKd6Mv/oIGJAlIaUUpRoFU3oA2gWR0Ck+coIfKZEdX2UKGgGaAloD0MIw/NSsTGqYECUhpRSlGgVTegDaBZHQKT/5hpg1FZ1fZQoaAZoCWgPQwjicyfYf9BiQJSGlFKUaBVN6ANoFkdApQUycVgx8HV9lChoBmgJaA9DCOguibOic2RAlIaUUpRoFU3oA2gWR0ClCvX/xUeddX2UKGgGaAloD0MIbLQc6KFeLkCUhpRSlGgVTQMBaBZHQKULtWilBQh1fZQoaAZoCWgPQwh6NNWT+QdtQJSGlFKUaBVNPQFoFkdApQywiml67nV9lChoBmgJaA9DCIogzsOJMmVAlIaUUpRoFU3oA2gWR0ClEnOuzQeFdX2UKGgGaAloD0MIK4cW2c56YUCUhpRSlGgVTegDaBZHQKUYKQPqcEx1fZQoaAZoCWgPQwiZKa2/pTFhQJSGlFKUaBVN6ANoFkdApR2C0WuX/3V9lChoBmgJaA9DCLwi+N9KBjrAlIaUUpRoFU0SAWgWR0ClH7lJ6IFedX2UKGgGaAloD0MIADj27LlJYECUhpRSlGgVTegDaBZHQKUmA73fygB1fZQoaAZoCWgPQwhIisiwimBiQJSGlFKUaBVN6ANoFkdApStyfL9uP3V9lChoBmgJaA9DCBu4A3XKo/u/lIaUUpRoFU0mAWgWR0ClLED28IzFdX2UKGgGaAloD0MI2sh1U8q2YUCUhpRSlGgVTegDaBZHQKUyjLcKw6h1fZQoaAZoCWgPQwggCft2EsU2QJSGlFKUaBVNEwFoFkdApTNPOyE+PnV9lChoBmgJaA9DCEmERrBx5SLAlIaUUpRoFU0LAWgWR0ClNAzPa+N+dX2UKGgGaAloD0MI1IIXfYUcYUCUhpRSlGgVTegDaBZHQKU6armQr+Z1fZQoaAZoCWgPQwizX3e6c/BtQJSGlFKUaBVNYAFoFkdApT0FDlYEGXV9lChoBmgJaA9DCJIFTOBWA29AlIaUUpRoFU1gAWgWR0ClPh699MK1dX2UKGgGaAloD0MItyVywRljX0CUhpRSlGgVTegDaBZHQKVEjYlpoK51fZQoaAZoCWgPQwh3nnjOFq9bQJSGlFKUaBVN6ANoFkdApUriGUOd5XV9lChoBmgJaA9DCJG5Mqg2OOW/lIaUUpRoFU0LAWgWR0ClS6ffoA4odX2UKGgGaAloD0MILnO6LCavYECUhpRSlGgVTegDaBZHQKVRZ7ZWaMJ1fZQoaAZoCWgPQwhu+x7114VdQJSGlFKUaBVN6ANoFkdApVbnfTCtR3V9lChoBmgJaA9DCHsS2JyDRmJAlIaUUpRoFU3oA2gWR0ClXFXrD63zdX2UKGgGaAloD0MIrwrUYvCnX0CUhpRSlGgVTegDaBZHQKViRbmEGqx1fZQoaAZoCWgPQwipMLYQ5D1cQJSGlFKUaBVN6ANoFkdApWenxSYPXnV9lChoBmgJaA9DCGIVb2QeDmJAlIaUUpRoFU3oA2gWR0ClbZ+0G/vfdX2UKGgGaAloD0MIGHrE6LlDYUCUhpRSlGgVTegDaBZHQKVy+Zk078x1fZQoaAZoCWgPQwh1HhX/d5xgQJSGlFKUaBVN6ANoFkdApXjgZ2pyZXV9lChoBmgJaA9DCHmxMEROY0dAlIaUUpRoFU0HAWgWR0CleZ1B2OhkdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 9770, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.02, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
my_lander_v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcad3de412d7d27a0289ca6e6a923edbed70dc8dffe102b5c9c3f3991ffe7c08
3
+ size 146867
my_lander_v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
my_lander_v1/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe2af240670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe2af240700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe2af240790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe2af240820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe2af2408b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe2af240940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe2af2409d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe2af240a60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe2af240af0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe2af240b80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe2af240c10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe2af240ca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fe2af23d450>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 1,
46
+ "num_timesteps": 1000448,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673645825610656294,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAE2RaD7xYtY9rlIxvknwhr7u/Q87DNscPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.00044800000000000395,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMID7iumBFRakCUhpRSlIwBbJRNpwGMAXSUR0CkTreY+jdpdX2UKGgGaAloD0MIgSbChqc7UUCUhpRSlGgVS+RoFkdApFDNcQiA2HV9lChoBmgJaA9DCDMZjuczgCRAlIaUUpRoFUvqaBZHQKRRigsbvPV1fZQoaAZoCWgPQwgTRrOyfbAkQJSGlFKUaBVL52gWR0CkUjtLteD4dX2UKGgGaAloD0MIxF29igxKb0CUhpRSlGgVTSUBaBZHQKRTIT238XN1fZQoaAZoCWgPQwiXjc75aVRwQJSGlFKUaBVNRAFoFkdApFWcir1dxHV9lChoBmgJaA9DCJT3cTTHqW5AlIaUUpRoFU1iAWgWR0CkVrjlgc94dX2UKGgGaAloD0MI0CueeiRKbUCUhpRSlGgVTU0BaBZHQKRXrO4XoDB1fZQoaAZoCWgPQwjvG197ZgdPQJSGlFKUaBVL32gWR0CkWbpHAh0RdX2UKGgGaAloD0MIb4Jvmn6mcUCUhpRSlGgVTU8BaBZHQKRawRIz3yt1fZQoaAZoCWgPQwiRfvs6cP1tQJSGlFKUaBVNPQFoFkdApFu18NQTEnV9lChoBmgJaA9DCJw1eF+V1z5AlIaUUpRoFUvUaBZHQKRcT0Syt3h1fZQoaAZoCWgPQwirQC0Gj6lvQJSGlFKUaBVNQAFoFkdApF696qsEJXV9lChoBmgJaA9DCMdGIF7XgGtAlIaUUpRoFU1kAWgWR0CkX9qdYnv2dX2UKGgGaAloD0MI9YWQ836EbUCUhpRSlGgVTaMCaBZHQKRjoqaPS2J1fZQoaAZoCWgPQwiXrmAb8XdRQJSGlFKUaBVL/2gWR0CkZFHkLhJidX2UKGgGaAloD0MIFlCopw9ibkCUhpRSlGgVTRcBaBZHQKRlJTYukDZ1fZQoaAZoCWgPQwjVljrIKwpxQJSGlFKUaBVNGgFoFkdApGYAWFev6nV9lChoBmgJaA9DCIrpQqz+aDJAlIaUUpRoFUv1aBZHQKRoGOsDGLl1fZQoaAZoCWgPQwgKSPsfYD0cQJSGlFKUaBVL7GgWR0CkaMWnsLOSdX2UKGgGaAloD0MILAyR09cjH0CUhpRSlGgVTQ0BaBZHQKRpgNPP9k11fZQoaAZoCWgPQwhMiLmk6g1hQJSGlFKUaBVN6ANoFkdApG4okTpPh3V9lChoBmgJaA9DCMWM8PYgSETAlIaUUpRoFUvwaBZHQKRuy9nK4hF1fZQoaAZoCWgPQwjNdK+TeltuQJSGlFKUaBVNewFoFkdApHF1zQu27XV9lChoBmgJaA9DCNv4E5UNaxlAlIaUUpRoFU0QAWgWR0Ckci+otL+QdX2UKGgGaAloD0MIfsnGgy3PbECUhpRSlGgVTSkBaBZHQKRzBZkkKNR1fZQoaAZoCWgPQwikb9I0KK1fQJSGlFKUaBVN6ANoFkdApHhsp7TlT3V9lChoBmgJaA9DCLgFS3UBFUhAlIaUUpRoFUvdaBZHQKR6fD8cdYJ1fZQoaAZoCWgPQwh1sP7P4a5wQJSGlFKUaBVNQAFoFkdApHtvh0hePnV9lChoBmgJaA9DCIlBYOXQpENAlIaUUpRoFUvpaBZHQKR8FPjXFtN1fZQoaAZoCWgPQwgqO/2gLjhxQJSGlFKUaBVNVQNoFkdApIC4zzmOl3V9lChoBmgJaA9DCBghPNo4c3FAlIaUUpRoFU01AWgWR0CkgZhY/3WXdX2UKGgGaAloD0MI1zGuuPigfcCUhpRSlGgVTRQBaBZHQKSCZo7FKkF1fZQoaAZoCWgPQwhAUG7b9xRAwJSGlFKUaBVNLgFoFkdApIS24kNWl3V9lChoBmgJaA9DCIIBhA8lcHFAlIaUUpRoFU08AWgWR0CkhZxcNYr8dX2UKGgGaAloD0MIpRDIJY4Nb0CUhpRSlGgVTaIBaBZHQKSG4x33Ycx1fZQoaAZoCWgPQwg5DrxaLuNwQJSGlFKUaBVNJgFoFkdApIkxFmWdE3V9lChoBmgJaA9DCGv0aoBSXWtAlIaUUpRoFU1kAmgWR0Cki7XIMjNZdX2UKGgGaAloD0MIqoHmc244bUCUhpRSlGgVTXQBaBZHQKSOU4wyqMp1fZQoaAZoCWgPQwiBIECGjt1FQJSGlFKUaBVL5mgWR0Ckjwr/CIk7dX2UKGgGaAloD0MI6DOg3oyQcECUhpRSlGgVTUMBaBZHQKSQHlFtsN51fZQoaAZoCWgPQwjilLn5xhtxQJSGlFKUaBVNLgFoFkdApJJ6pzcRDnV9lChoBmgJaA9DCGpQNA/gIG9AlIaUUpRoFU1cAWgWR0Ckk4LzwtrcdX2UKGgGaAloD0MIrrt5qsNHb0CUhpRSlGgVTWsCaBZHQKSXEPlMh5h1fZQoaAZoCWgPQwhlVu9wO3QWQJSGlFKUaBVNFgFoFkdApJfb4k/r0XV9lChoBmgJaA9DCHjwEwcQrHBAlIaUUpRoFU1XAWgWR0CkmOT5O8CgdX2UKGgGaAloD0MIa+9TVWigC8CUhpRSlGgVTREBaBZHQKSZpsrNGEx1fZQoaAZoCWgPQwjMKmwGuC5tQJSGlFKUaBVNRgFoFkdApJv/gJkXlHV9lChoBmgJaA9DCFmnyveMH3BAlIaUUpRoFU1zAWgWR0CknSW/SH/MdX2UKGgGaAloD0MIhA8lWjIJcECUhpRSlGgVTYoDaBZHQKShtqveP7x1fZQoaAZoCWgPQwiemssNBhZiQJSGlFKUaBVN6ANoFkdApKbsGs3hoHV9lChoBmgJaA9DCDTY1HlUYWJAlIaUUpRoFU3oA2gWR0Ckq7mPo3aSdX2UKGgGaAloD0MIi4wOSMK0YkCUhpRSlGgVTegDaBZHQKSxeBnzxw11fZQoaAZoCWgPQwhjDoKO1oBjQJSGlFKUaBVN6ANoFkdApLaEnE2pAHV9lChoBmgJaA9DCCCXOPJAR2FAlIaUUpRoFU3oA2gWR0Cku7PUaybAdX2UKGgGaAloD0MIjSWsjbGmX0CUhpRSlGgVTegDaBZHQKTBOW9lEql1fZQoaAZoCWgPQwhSKuEJvXY3QJSGlFKUaBVLvGgWR0Ckwbg4ffXPdX2UKGgGaAloD0MItTNMbSnvY0CUhpRSlGgVTegDaBZHQKTG2bONYKZ1fZQoaAZoCWgPQwi8ICI1bTBiQJSGlFKUaBVN6ANoFkdApMxUhJRO13V9lChoBmgJaA9DCJyLv+0JqklAlIaUUpRoFUvnaBZHQKTM/uyeI2x1fZQoaAZoCWgPQwiJRQw7DBdtQJSGlFKUaBVNiwFoFkdApM/JbD/EO3V9lChoBmgJaA9DCEKxFTStPmFAlIaUUpRoFU3oA2gWR0Ck1NYGdI5HdX2UKGgGaAloD0MIt+7mqc5ke8CUhpRSlGgVTS4BaBZHQKTVuJO32El1fZQoaAZoCWgPQwjJqgg3GZ1iQJSGlFKUaBVN6ANoFkdApNyYX0oSc3V9lChoBmgJaA9DCEchyazeV2FAlIaUUpRoFU3oA2gWR0Ck4zEX1rZbdX2UKGgGaAloD0MInBTmPc4zZECUhpRSlGgVTegDaBZHQKToalImPYF1fZQoaAZoCWgPQwgxt3u5z71gQJSGlFKUaBVN6ANoFkdApO2lpj+aSnV9lChoBmgJaA9DCGGnWDWIq2JAlIaUUpRoFU3oA2gWR0Ck8yvRzBAOdX2UKGgGaAloD0MIJA7ZQLoY/D+UhpRSlGgVS+VoFkdApPPTxVhkRXV9lChoBmgJaA9DCKd6Mv/oIGJAlIaUUpRoFU3oA2gWR0Ck+coIfKZEdX2UKGgGaAloD0MIw/NSsTGqYECUhpRSlGgVTegDaBZHQKT/5hpg1FZ1fZQoaAZoCWgPQwjicyfYf9BiQJSGlFKUaBVN6ANoFkdApQUycVgx8HV9lChoBmgJaA9DCOguibOic2RAlIaUUpRoFU3oA2gWR0ClCvX/xUeddX2UKGgGaAloD0MIbLQc6KFeLkCUhpRSlGgVTQMBaBZHQKULtWilBQh1fZQoaAZoCWgPQwh6NNWT+QdtQJSGlFKUaBVNPQFoFkdApQywiml67nV9lChoBmgJaA9DCIogzsOJMmVAlIaUUpRoFU3oA2gWR0ClEnOuzQeFdX2UKGgGaAloD0MIK4cW2c56YUCUhpRSlGgVTegDaBZHQKUYKQPqcEx1fZQoaAZoCWgPQwiZKa2/pTFhQJSGlFKUaBVN6ANoFkdApR2C0WuX/3V9lChoBmgJaA9DCLwi+N9KBjrAlIaUUpRoFU0SAWgWR0ClH7lJ6IFedX2UKGgGaAloD0MIADj27LlJYECUhpRSlGgVTegDaBZHQKUmA73fygB1fZQoaAZoCWgPQwhIisiwimBiQJSGlFKUaBVN6ANoFkdApStyfL9uP3V9lChoBmgJaA9DCBu4A3XKo/u/lIaUUpRoFU0mAWgWR0ClLED28IzFdX2UKGgGaAloD0MI2sh1U8q2YUCUhpRSlGgVTegDaBZHQKUyjLcKw6h1fZQoaAZoCWgPQwggCft2EsU2QJSGlFKUaBVNEwFoFkdApTNPOyE+PnV9lChoBmgJaA9DCEmERrBx5SLAlIaUUpRoFU0LAWgWR0ClNAzPa+N+dX2UKGgGaAloD0MI1IIXfYUcYUCUhpRSlGgVTegDaBZHQKU6armQr+Z1fZQoaAZoCWgPQwizX3e6c/BtQJSGlFKUaBVNYAFoFkdApT0FDlYEGXV9lChoBmgJaA9DCJIFTOBWA29AlIaUUpRoFU1gAWgWR0ClPh699MK1dX2UKGgGaAloD0MItyVywRljX0CUhpRSlGgVTegDaBZHQKVEjYlpoK51fZQoaAZoCWgPQwh3nnjOFq9bQJSGlFKUaBVN6ANoFkdApUriGUOd5XV9lChoBmgJaA9DCJG5Mqg2OOW/lIaUUpRoFU0LAWgWR0ClS6ffoA4odX2UKGgGaAloD0MILnO6LCavYECUhpRSlGgVTegDaBZHQKVRZ7ZWaMJ1fZQoaAZoCWgPQwhu+x7114VdQJSGlFKUaBVN6ANoFkdApVbnfTCtR3V9lChoBmgJaA9DCHsS2JyDRmJAlIaUUpRoFU3oA2gWR0ClXFXrD63zdX2UKGgGaAloD0MIrwrUYvCnX0CUhpRSlGgVTegDaBZHQKViRbmEGqx1fZQoaAZoCWgPQwipMLYQ5D1cQJSGlFKUaBVN6ANoFkdApWenxSYPXnV9lChoBmgJaA9DCGIVb2QeDmJAlIaUUpRoFU3oA2gWR0ClbZ+0G/vfdX2UKGgGaAloD0MIGHrE6LlDYUCUhpRSlGgVTegDaBZHQKVy+Zk078x1fZQoaAZoCWgPQwh1HhX/d5xgQJSGlFKUaBVN6ANoFkdApXjgZ2pyZXV9lChoBmgJaA9DCHmxMEROY0dAlIaUUpRoFU0HAWgWR0CleZ1B2OhkdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 9770,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.02,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
my_lander_v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87824a376cedbfdad89bfe3c745304affe0e190c9eef866b1bcdbe4177c09935
3
+ size 88057
my_lander_v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93503d9bd5cc2a84f8cbea153548378d33aedfe4a54b1450890b5a1be1de6969
3
+ size 43393
my_lander_v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
my_lander_v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (161 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 243.92779473829637, "std_reward": 38.78945282954965, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-13T22:45:41.071761"}