LunarLanderPPO / config.json
prathith's picture
Upload PPO LunarLander-v2 trained agent
adc8376
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f00f103f130>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f00f103f1c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f00f103f250>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f00f103f2e0>", "_build": "<function ActorCriticPolicy._build at 0x7f00f103f370>", "forward": "<function ActorCriticPolicy.forward at 0x7f00f103f400>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f00f103f490>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f00f103f520>", "_predict": "<function ActorCriticPolicy._predict at 0x7f00f103f5b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f00f103f640>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f00f103f6d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f00f103f760>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f00f1040c80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687551378645836016, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI0Y2r3DlQa6wSs1uJoRWrNAbRg77lRSNwAAgD8AAIA/QELFvRTUirpiVxo7Kz4wtSeeCzqyZzO6AACAPwAAgD8zZ6Y7j7YgureWJbcrQ4CyYV+2OpKxQzYAAIA/AACAPwZGL777XIG89YdXu2p+x7kEUe09KLKkOgAAgD8AAIA/MyvHPMPZJDugLnO+F98RvgdDAr1NENE+AACAPwAAAADau8O9w0EeukXJ8bqc3Ry203kiOvigDDoAAIA/AACAP7Mms71IE4a6nxKQO4sGxTh9ChS6MNtCugAAgD8AAAAADTiRvSmofboGRc26jWLetaMFrzriZO85AACAPwAAgD8zAgW9KaR4us6G5jh63vYzHqIsOxSyBrgAAIA/AACAPzMX1r0UbuG4tlQxPC4l47Tk/tW7wqsPtAAAgD8AAAAAzQyVvSncT7rib765Bb2eNf2oHztF4t04AACAPwAAgD+mx16+IvUgP6zsBj40/42+S6mRvWKjHTwAAAAAAAAAAGZONb0UTJS6yubiupq+/bWh27u6sUkDOgAAgD8AAIA/M2IxvRSoibpTrIi6oh6StS1TPDo6yp45AACAPwAAgD8wHaG+vxs+P5hMBj7eK6C+tz02vRnnHT0AAAAAAAAAAMA5vr1cjwq6INEzPHww0jWL6PQ6jW7INAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGE0I/7iyY6MAWyUTegDjAF0lEdAoIM6goPTX3V9lChoBkdAY/zzq8lHBmgHTegDaAhHQKCFUqLjxTd1fZQoaAZHQGVmdCeEqUhoB03oA2gIR0Cgh1kal1r7dX2UKGgGR0BmHagIyCWeaAdN6ANoCEdAoIt0ELYwqXV9lChoBkdAZqt63RXwLGgHTegDaAhHQKCM+EqUeMh1fZQoaAZHQGLMy6UaAFxoB03oA2gIR0CgletC7btadX2UKGgGR0BnRbDGcWj5aAdN6ANoCEdAoJYQ5ggHNXV9lChoBkdAY7me/Yao/GgHTegDaAhHQKCWNS3solV1fZQoaAZHQGL/3FDOTq1oB03oA2gIR0CgmAYAsCkodX2UKGgGR0Bj44JkXk5qaAdN6ANoCEdAoJgO5vtMPHV9lChoBkdAYuNsE7nxKGgHTegDaAhHQKCaQkVvddp1fZQoaAZHQGZncZUDMeRoB03oA2gIR0CgmrKbKA8TdX2UKGgGR0BQiNkBjnV5aAdL82gIR0Cgng6HCXQddX2UKGgGR0BlrlZq20AtaAdN6ANoCEdAoKB3h2nsLXV9lChoBkdAaDv83Mpw0mgHTegDaAhHQKCgwj5bhWJ1fZQoaAZHQGJhn/T9bX9oB03oA2gIR0CgpSHO0LMLdX2UKGgGR0BmHr/wRXfZaAdN6ANoCEdAoKlsgGKQ73V9lChoBkdAY5ngxagVXWgHTegDaAhHQKCrH7laKUF1fZQoaAZHQFFZBI4EOiFoB0vEaAhHQKCsN/WlMyt1fZQoaAZHQGOvpyZKFqVoB03oA2gIR0CgrOSquKXOdX2UKGgGR0BkcaSJTER8aAdN6ANoCEdAoK5ebgCOm3V9lChoBkdAZ0h/smfGuWgHTegDaAhHQKCxqVGkN4J1fZQoaAZHQGaQwWvbGm1oB03oA2gIR0Cgs1O/+Kj0dX2UKGgGR0BL8IaDPGADaAdL4mgIR0Cgs4IvSMLndX2UKGgGR0Bjp8JrtVrAaAdN6ANoCEdAoLQNZmqYJHV9lChoBkdAX9RqCYkVvmgHTegDaAhHQKC0Miml67d1fZQoaAZHQGOemDUVi4JoB03oA2gIR0CgtFoysS00dX2UKGgGR0BemNrbg0j1aAdN6ANoCEdAoL8ohEBsAXV9lChoBkdANPiLZSNwSGgHS95oCEdAoMD0q6OHWXV9lChoBkdAZjLT850bLmgHTegDaAhHQKDCkZ9d/rl1fZQoaAZHQGLpCJO32EloB03oA2gIR0Cgw0AwXZXddX2UKGgGR0BhlUjqv/zbaAdN6ANoCEdAoMfaT0QK8nV9lChoBkdAbhc8lolD4WgHTakDaAhHQKDIOTpxFRZ1fZQoaAZHQGM3VrylN11oB03oA2gIR0CgykuZkTYedX2UKGgGR0BlCeShakhzaAdN6ANoCEdAoNHBNATqS3V9lChoBkdAZi3LMcIZ62gHTegDaAhHQKDTuUlAu7J1fZQoaAZHQGhBmR3eN1hoB03oA2gIR0Cg1MUDMeOodX2UKGgGR0Bi+64QSSNgaAdN6ANoCEdAoNcR6By0bHV9lChoBkdAYCoxlg+hXmgHTegDaAhHQKDcfa/yoXN1fZQoaAZHQGYL03XI2floB03oA2gIR0Cg3Mx/3FkydX2UKGgGR0BjrwnOSntOaAdN6ANoCEdAoN2ws3AEdXV9lChoBkdAZtg51eSjg2gHTegDaAhHQKDd6mqHXVd1fZQoaAZHQGIXEcCHRCxoB03oA2gIR0Cg3iar/82rdX2UKGgGR0BUsgkPczqKaAdL92gIR0Cg6UkpI+W4dX2UKGgGR0BlLVU6xPfsaAdN6ANoCEdAoOo3Tb349HV9lChoBkdAYQyMTewcHWgHTegDaAhHQKDrh6Rhc7h1fZQoaAZHQGF2pTdcjaBoB03oA2gIR0Cg7Jhz/6wddX2UKGgGR0BhW8fLcKw7aAdN6ANoCEdAoOz5OzposnV9lChoBkdAZkcTJQtSRGgHTegDaAhHQKDwVm4iHIp1fZQoaAZHQGTFkgGKQ7toB03oA2gIR0Cg8LJzkp7UdX2UKGgGR0Bhv5KraM72aAdN6ANoCEdAoPLOCmMwUXV9lChoBkdAcgY9EkSmImgHTVkBaAhHQKD0szHCGet1fZQoaAZHQGYc3hfjS5RoB03oA2gIR0Cg+gWRq46PdX2UKGgGR0Bmps+FDfFaaAdN6ANoCEdAoPxsm+j/MnV9lChoBkdAY7hGgBcRlGgHTegDaAhHQKD9zsCT2WZ1fZQoaAZHQEw5AzHjp9toB0vdaAhHQKEEY7Bfrrx1fZQoaAZHQGWQhczImw9oB03oA2gIR0ChBeOinHeadX2UKGgGR0BmPrcfvF3qaAdN6ANoCEdAoQYVC1JDmnV9lChoBkdAZrMKfFrEcmgHTegDaAhHQKEGp+irT6V1fZQoaAZHQGLlOstCiRJoB03oA2gIR0ChBs/OdGy5dX2UKGgGR0BwrKS2Yv38aAdNwANoCEdAoQbzGDL8rXV9lChoBkdAYw7mZmZmZmgHTegDaAhHQKEG8/+sHSp1fZQoaAZHQGC9CuloDgZoB03oA2gIR0ChETtet0V8dX2UKGgGR0Bh5y0Y0l7daAdN6ANoCEdAoRQG5DqnnHV9lChoBkdASLLujRD1G2gHS9FoCEdAoRQqP+4smXV9lChoBkdAYuQMJhOQAGgHTegDaAhHQKEUktU4rBl1fZQoaAZHQGGF4w7DEWJoB03oA2gIR0ChGYg6EJ0GdX2UKGgGR0BnkA6nzg/DaAdN6ANoCEdAoRoIZl4C63V9lChoBkdAZBBB/qgRLGgHTegDaAhHQKEc94TsY2t1fZQoaAZHQDNxdMTN+spoB0vsaAhHQKEdp6zE74l1fZQoaAZHQGWEQpvxYq5oB03oA2gIR0ChH6b+DOC5dX2UKGgGR0AnE/mDDjzaaAdL52gIR0ChImVyvLX+dX2UKGgGR0Bl5jFwT/Q0aAdN6ANoCEdAoSSKXIEKV3V9lChoBkdAcWSkyk9EC2gHTcoDaAhHQKEmJhrFfiR1fZQoaAZHQG8fjD8+A3FoB03TAmgIR0ChJjUpEx7BdX2UKGgGR0BvF80FbFCLaAdNwwJoCEdAoSZVtEXtSnV9lChoBkdAcXsrI5o4/GgHTXIDaAhHQKEqzotcv/R1fZQoaAZHQGbwfz8P4EhoB03oA2gIR0ChK6BFmWdFdX2UKGgGR0BlMJvR7Z3+aAdN6ANoCEdAoS4Jv99+gHV9lChoBkdAYTNB7/n4f2gHTegDaAhHQKEuCuOjqOd1fZQoaAZHQGZu5jx0+1VoB03oA2gIR0ChL8rThHbzdX2UKGgGR0BvofhqCYkWaAdNhwJoCEdAoTnymGdqcnV9lChoBkdAcDPeKsMiKWgHTboBaAhHQKE6fH5rP+p1fZQoaAZHQHIuwrDqGDdoB0v6aAhHQKE7UecQRPJ1fZQoaAZHQGRj32VVxS5oB03oA2gIR0ChO5oX0oSddX2UKGgGR0BnzWHHmzSkaAdN6ANoCEdAoTvAHu7YkHV9lChoBkdAZayZ5zHS4WgHTegDaAhHQKFAO5paibl1fZQoaAZHQGSl7bDdgv1oB03oA2gIR0ChQfjIikftdX2UKGgGR0Bpj96LOzIFaAdN6ANoCEdAoUJoyZa3Z3V9lChoBkdAYr5OW0JF9mgHTegDaAhHQKFF3fYSQHR1fZQoaAZHQHMLmBjFyaNoB02+AmgIR0ChRqOnEVFhdX2UKGgGR0BnXwuscQyzaAdN6ANoCEdAoUflR3u/lHV9lChoBkdAclcKdhAnlWgHTWECaAhHQKFJPyyUs4F1fZQoaAZHQGWH+Myad+ZoB03oA2gIR0ChSV3Z5AyEdX2UKGgGR0Bj4tO45Lh8aAdN6ANoCEdAoUmJmZmZmnV9lChoBkdAbevqqOtGNWgHTToCaAhHQKFKbV94NZx1fZQoaAZHQG2Fdbor4FloB016AWgIR0ChS7XztkWidX2UKGgGR0BwYkOiFj/daAdNCwNoCEdAoU478ejmCHV9lChoBkdAWcNz2exwAGgHTegDaAhHQKFQfJe3QUp1fZQoaAZHQGaEJIUahpRoB03oA2gIR0ChUH2R7qptdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 276, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}