File size: 15,583 Bytes
61935da
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7d348a49f880>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d348a4a1a40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690705915785437210, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+tXTPuzSk7ydfBg/+tXTPuzSk7ydfBg/+tXTPuzSk7ydfBg/+tXTPuzSk7ydfBg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARYvDv7vgOL7yT7g9cFLePtVICL/n9DY/SyrHP8Fz2r+GinY/X+MYP+Pzxb/JrL0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD61dM+7NKTvJ18GD+uD7w7jMTVu2BNizz61dM+7NKTvJ18GD+uD7w7jMTVu2BNizz61dM+7NKTvJ18GD+uD7w7jMTVu2BNizz61dM+7NKTvJ18GD+uD7w7jMTVu2BNizyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4137419  -0.01804491  0.59565145]\n [ 0.4137419  -0.01804491  0.59565145]\n [ 0.4137419  -0.01804491  0.59565145]\n [ 0.4137419  -0.01804491  0.59565145]]", "desired_goal": "[[-1.5276877  -0.18054478  0.08999623]\n [ 0.4342227  -0.5323613   0.7146744 ]\n [ 1.5559782  -1.7066575   0.9630512 ]\n [ 0.5972194  -1.5465053   1.4818355 ]]", "observation": "[[ 0.4137419  -0.01804491  0.59565145  0.00573917 -0.00652367  0.01700467]\n [ 0.4137419  -0.01804491  0.59565145  0.00573917 -0.00652367  0.01700467]\n [ 0.4137419  -0.01804491  0.59565145  0.00573917 -0.00652367  0.01700467]\n [ 0.4137419  -0.01804491  0.59565145  0.00573917 -0.00652367  0.01700467]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAie1ROwWcGj237ZA+/bvgPGVKfTxFXTc+APUUvhkJXjyWxHc+djCKvcS1BL0IeUE8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[ 0.00320325  0.03774645  0.28306362]\n [ 0.02743339  0.01545963  0.17906673]\n [-0.14546585  0.01355197  0.24196085]\n [-0.06747524 -0.03239991  0.01180864]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjXxe8dSj/b+UhpRSlIwBbJRLMowBdJRHQKb9Cgq3Eyd1fZQoaAZoCWgPQwhQNXo1QEkFwJSGlFKUaBVLMmgWR0Cm/MhikO7QdX2UKGgGaAloD0MIjgOvljuzFMCUhpRSlGgVSzJoFkdApvyIeNkvsnV9lChoBmgJaA9DCD6UaMnjWRfAlIaUUpRoFUsyaBZHQKb8TD1oQFt1fZQoaAZoCWgPQwjF/x1RoTodwJSGlFKUaBVLMmgWR0Cm/j2AXl8xdX2UKGgGaAloD0MInbzIBPza/L+UhpRSlGgVSzJoFkdApv363I+4b3V9lChoBmgJaA9DCL1w58JIr/G/lIaUUpRoFUsyaBZHQKb9uq4pc5d1fZQoaAZoCWgPQwgtJ6H0hSgkwJSGlFKUaBVLMmgWR0Cm/X3vphWpdX2UKGgGaAloD0MIXmkZqfcUBcCUhpRSlGgVSzJoFkdApv/Axgy/K3V9lChoBmgJaA9DCLwhjQqc3BLAlIaUUpRoFUsyaBZHQKb/flPrOZ91fZQoaAZoCWgPQwjVWpiFdi4EwJSGlFKUaBVLMmgWR0Cm/z4lIEr5dX2UKGgGaAloD0MIvjCZKhh1A8CUhpRSlGgVSzJoFkdApv8B+z+m33V9lChoBmgJaA9DCExQw7ewHhDAlIaUUpRoFUsyaBZHQKcA6GyHEdh1fZQoaAZoCWgPQwjzxklh3lMiwJSGlFKUaBVLMmgWR0CnAKYNAkcCdX2UKGgGaAloD0MIV+2akNaY/b+UhpRSlGgVSzJoFkdApwBlIZqEe3V9lChoBmgJaA9DCGsNpfYiqhTAlIaUUpRoFUsyaBZHQKcAKEhaC+V1fZQoaAZoCWgPQwh6ibFMvyQSwJSGlFKUaBVLMmgWR0CnAhdFWn0kdX2UKGgGaAloD0MI+MQ6Vb5n/r+UhpRSlGgVSzJoFkdApwHU8NhE0HV9lChoBmgJaA9DCADK372jNhvAlIaUUpRoFUsyaBZHQKcBlBDXvph1fZQoaAZoCWgPQwivIqMDkkAUwJSGlFKUaBVLMmgWR0CnAVfg75mAdX2UKGgGaAloD0MIgGH5822BHcCUhpRSlGgVSzJoFkdApwPcC3gDR3V9lChoBmgJaA9DCKSl8naEU/6/lIaUUpRoFUsyaBZHQKcDm57PY4B1fZQoaAZoCWgPQwhBLQYP0777v5SGlFKUaBVLMmgWR0CnA1wMx46fdX2UKGgGaAloD0MIE7cKYqA7GsCUhpRSlGgVSzJoFkdApwMgMOPNmnV9lChoBmgJaA9DCCocQSrFTvy/lIaUUpRoFUsyaBZHQKcF5A6+36R1fZQoaAZoCWgPQwgz4CwlyykIwJSGlFKUaBVLMmgWR0CnBaHmRvFWdX2UKGgGaAloD0MImWIOgo4WHMCUhpRSlGgVSzJoFkdApwVhxWDHwXV9lChoBmgJaA9DCLItA85S8vy/lIaUUpRoFUsyaBZHQKcFJa6BiCt1fZQoaAZoCWgPQwjT3uALk8kDwJSGlFKUaBVLMmgWR0CnB70aIeo2dX2UKGgGaAloD0MIz/QSY5meEMCUhpRSlGgVSzJoFkdApwd7e0ojOnV9lChoBmgJaA9DCAuW6gJeZhjAlIaUUpRoFUsyaBZHQKcHO2bXpW51fZQoaAZoCWgPQwg4+MJkqqAPwJSGlFKUaBVLMmgWR0CnBv9eQdS3dX2UKGgGaAloD0MIn6ut2F82HcCUhpRSlGgVSzJoFkdApwkCfe1rqXV9lChoBmgJaA9DCJJB7iJM0R7AlIaUUpRoFUsyaBZHQKcIv+vQnhN1fZQoaAZoCWgPQwiKdD+nII8VwJSGlFKUaBVLMmgWR0CnCH8HWz4UdX2UKGgGaAloD0MIzhYQWg8/DsCUhpRSlGgVSzJoFkdApwhClrM1THV9lChoBmgJaA9DCPFHUWfuMRLAlIaUUpRoFUsyaBZHQKcKH0aqCH11fZQoaAZoCWgPQwhI36RpUCQWwJSGlFKUaBVLMmgWR0CnCdzHCGeudX2UKGgGaAloD0MIkdYYdEJoB8CUhpRSlGgVSzJoFkdApwmb1h9b5nV9lChoBmgJaA9DCBXJVwIp8fK/lIaUUpRoFUsyaBZHQKcJXvv0AcV1fZQoaAZoCWgPQwjWGkrtRTT5v5SGlFKUaBVLMmgWR0CnC0c5bQkYdX2UKGgGaAloD0MIDfrS2587F8CUhpRSlGgVSzJoFkdApwsEeMhounV9lChoBmgJaA9DCEtzK4TVCCDAlIaUUpRoFUsyaBZHQKcKw5CF9KF1fZQoaAZoCWgPQwgSg8DKoUX/v5SGlFKUaBVLMmgWR0CnCoanzg/DdX2UKGgGaAloD0MI7UYf8wGBDMCUhpRSlGgVSzJoFkdApwxZzcRDkXV9lChoBmgJaA9DCHwo0ZLH8xbAlIaUUpRoFUsyaBZHQKcMFyGzru91fZQoaAZoCWgPQwhGKLaCpgUNwJSGlFKUaBVLMmgWR0CnC9Y6fapQdX2UKGgGaAloD0MI8Ps3L04cD8CUhpRSlGgVSzJoFkdApwuZPl+3IHV9lChoBmgJaA9DCBnmBG1ymAnAlIaUUpRoFUsyaBZHQKcNZqBVdX11fZQoaAZoCWgPQwhtq1lnfM8ewJSGlFKUaBVLMmgWR0CnDSQIMSbpdX2UKGgGaAloD0MIdjbknxk0EcCUhpRSlGgVSzJoFkdApwzjO5avBHV9lChoBmgJaA9DCLoVwmosIQbAlIaUUpRoFUsyaBZHQKcMpgkTpPh1fZQoaAZoCWgPQwg3cXK/QyEawJSGlFKUaBVLMmgWR0CnDnnktEofdX2UKGgGaAloD0MI/tE3aRoUEcCUhpRSlGgVSzJoFkdApw43WFvhqHV9lChoBmgJaA9DCECk374OXBnAlIaUUpRoFUsyaBZHQKcN9t+Csfd1fZQoaAZoCWgPQwgMXB5rRuYZwJSGlFKUaBVLMmgWR0CnDboNNJvpdX2UKGgGaAloD0MISl8IOe9/CcCUhpRSlGgVSzJoFkdApw+Y2/BWP3V9lChoBmgJaA9DCHXmHhK+twTAlIaUUpRoFUsyaBZHQKcPVj0cwQF1fZQoaAZoCWgPQwgLXYlA9Y8QwJSGlFKUaBVLMmgWR0CnDxUmD15CdX2UKGgGaAloD0MI8s8M4gObGMCUhpRSlGgVSzJoFkdApw7YOBlMAXV9lChoBmgJaA9DCBo2yvrNxP2/lIaUUpRoFUsyaBZHQKcQz1wo9cN1fZQoaAZoCWgPQwiWICOgwpEFwJSGlFKUaBVLMmgWR0CnEI2ZiNKidX2UKGgGaAloD0MI6wHzkClPEMCUhpRSlGgVSzJoFkdApxBMtqYZ23V9lChoBmgJaA9DCKHa4ET0iwrAlIaUUpRoFUsyaBZHQKcQD+1Bt1p1fZQoaAZoCWgPQwjkoISZtu8QwJSGlFKUaBVLMmgWR0CnEglvZRKpdX2UKGgGaAloD0MIYAZjRKJQ+L+UhpRSlGgVSzJoFkdApxHG3Sa3JHV9lChoBmgJaA9DCAJnKVlOAvm/lIaUUpRoFUsyaBZHQKcRhtb9qDd1fZQoaAZoCWgPQwj0v1yLFkAGwJSGlFKUaBVLMmgWR0CnEUnh0hePdX2UKGgGaAloD0MI9katMH1fJcCUhpRSlGgVSzJoFkdApxMlchTwUnV9lChoBmgJaA9DCBjpRe1+/SHAlIaUUpRoFUsyaBZHQKcS4t1ZDAt1fZQoaAZoCWgPQwjl795RY6IQwJSGlFKUaBVLMmgWR0CnEqHQID5kdX2UKGgGaAloD0MIP5C8cyhD+r+UhpRSlGgVSzJoFkdApxJk4vN/v3V9lChoBmgJaA9DCPZhvVErjArAlIaUUpRoFUsyaBZHQKcUeEg4ffZ1fZQoaAZoCWgPQwjKUYAomHEHwJSGlFKUaBVLMmgWR0CnFDXmmtQsdX2UKGgGaAloD0MI393KEp1VHMCUhpRSlGgVSzJoFkdApxP00xdpqXV9lChoBmgJaA9DCJ33/3HCxP+/lIaUUpRoFUsyaBZHQKcTuGnGbTd1fZQoaAZoCWgPQwjNk2sKZGYWwJSGlFKUaBVLMmgWR0CnFY4TTOPedX2UKGgGaAloD0MIUyXK3lLOEcCUhpRSlGgVSzJoFkdApxVLjkuHvnV9lChoBmgJaA9DCGFT51Hx7xjAlIaUUpRoFUsyaBZHQKcVCrCm/Fl1fZQoaAZoCWgPQwhfYizTL4EWwJSGlFKUaBVLMmgWR0CnFM3nIQvpdX2UKGgGaAloD0MIchk3NdC8IMCUhpRSlGgVSzJoFkdApxahvNu+AXV9lChoBmgJaA9DCPmHLT2aKgTAlIaUUpRoFUsyaBZHQKcWXz+3pfR1fZQoaAZoCWgPQwi3XtODglIMwJSGlFKUaBVLMmgWR0CnFh6HCXQddX2UKGgGaAloD0MI02weh8H8A8CUhpRSlGgVSzJoFkdApxXhpxm03XV9lChoBmgJaA9DCMEBLV3BtgnAlIaUUpRoFUsyaBZHQKcXtPfsNUh1fZQoaAZoCWgPQwg4E9OFWD0KwJSGlFKUaBVLMmgWR0CnF3IrOJLvdX2UKGgGaAloD0MIjq1nCMcMB8CUhpRSlGgVSzJoFkdApxcx8v24/nV9lChoBmgJaA9DCOq0boPaL/6/lIaUUpRoFUsyaBZHQKcW9TQVsUJ1fZQoaAZoCWgPQwhqTfOOUzQVwJSGlFKUaBVLMmgWR0CnGLG34Kx+dX2UKGgGaAloD0MIN/5EZcNaH8CUhpRSlGgVSzJoFkdApxhvHcUM5XV9lChoBmgJaA9DCGfWUkDaDxHAlIaUUpRoFUsyaBZHQKcYLiiqQzV1fZQoaAZoCWgPQwh+HqM88/IawJSGlFKUaBVLMmgWR0CnF/EPMB6sdX2UKGgGaAloD0MIrHR3nQ35DcCUhpRSlGgVSzJoFkdApxmssYl6aHV9lChoBmgJaA9DCJbOh2cJohnAlIaUUpRoFUsyaBZHQKcZah11W811fZQoaAZoCWgPQwiBd/LpsW0IwJSGlFKUaBVLMmgWR0CnGSj3/PxAdX2UKGgGaAloD0MIjnQGRl6mHsCUhpRSlGgVSzJoFkdApxjsFY+0PnV9lChoBmgJaA9DCIS6SKEsHBTAlIaUUpRoFUsyaBZHQKcauzi0fHR1fZQoaAZoCWgPQwjg9ZmzPoUhwJSGlFKUaBVLMmgWR0CnGnjlYEGJdX2UKGgGaAloD0MIwQDChxItA8CUhpRSlGgVSzJoFkdApxo3w5NoJ3V9lChoBmgJaA9DCBPx1vm3iwbAlIaUUpRoFUsyaBZHQKcZ+sYl6Z91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}