Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +13 -34
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- a2c-PandaReachDense-v2/system_info.txt +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +2 -2
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -8.26 +/- 3.01
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b2ef305656db37e2ba5bae1c7d52e517f1f38aaa1c748151be484e788969b45
|
3 |
+
size 54966
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -19,50 +19,29 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"num_timesteps":
|
23 |
-
"_total_timesteps":
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
},
|
34 |
-
"_last_obs":
|
35 |
-
|
36 |
-
|
37 |
-
"achieved_goal": "[[ 0.4137419 -0.01804491 0.59565145]\n [ 0.4137419 -0.01804491 0.59565145]\n [ 0.4137419 -0.01804491 0.59565145]\n [ 0.4137419 -0.01804491 0.59565145]]",
|
38 |
-
"desired_goal": "[[-1.5276877 -0.18054478 0.08999623]\n [ 0.4342227 -0.5323613 0.7146744 ]\n [ 1.5559782 -1.7066575 0.9630512 ]\n [ 0.5972194 -1.5465053 1.4818355 ]]",
|
39 |
-
"observation": "[[ 0.4137419 -0.01804491 0.59565145 0.00573917 -0.00652367 0.01700467]\n [ 0.4137419 -0.01804491 0.59565145 0.00573917 -0.00652367 0.01700467]\n [ 0.4137419 -0.01804491 0.59565145 0.00573917 -0.00652367 0.01700467]\n [ 0.4137419 -0.01804491 0.59565145 0.00573917 -0.00652367 0.01700467]]"
|
40 |
-
},
|
41 |
-
"_last_episode_starts": {
|
42 |
-
":type:": "<class 'numpy.ndarray'>",
|
43 |
-
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
-
},
|
45 |
-
"_last_original_obs": {
|
46 |
-
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAie1ROwWcGj237ZA+/bvgPGVKfTxFXTc+APUUvhkJXjyWxHc+djCKvcS1BL0IeUE8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
-
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[ 0.00320325 0.03774645 0.28306362]\n [ 0.02743339 0.01545963 0.17906673]\n [-0.14546585 0.01355197 0.24196085]\n [-0.06747524 -0.03239991 0.01180864]]",
|
50 |
-
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
-
},
|
52 |
"_episode_num": 0,
|
53 |
"use_sde": false,
|
54 |
"sde_sample_freq": -1,
|
55 |
-
"_current_progress_remaining":
|
56 |
"_stats_window_size": 100,
|
57 |
-
"ep_info_buffer":
|
58 |
-
|
59 |
-
|
60 |
-
},
|
61 |
-
"ep_success_buffer": {
|
62 |
-
":type:": "<class 'collections.deque'>",
|
63 |
-
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
-
},
|
65 |
-
"_n_updates": 50000,
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
@@ -91,5 +70,5 @@
|
|
91 |
"bounded_above": "[ True True True]",
|
92 |
"_np_random": null
|
93 |
},
|
94 |
-
"n_envs":
|
95 |
}
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78f182aed510>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x78f182ad3cc0>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
+
"num_timesteps": 0,
|
23 |
+
"_total_timesteps": 0,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": null,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
},
|
34 |
+
"_last_obs": null,
|
35 |
+
"_last_episode_starts": null,
|
36 |
+
"_last_original_obs": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
"_episode_num": 0,
|
38 |
"use_sde": false,
|
39 |
"sde_sample_freq": -1,
|
40 |
+
"_current_progress_remaining": 1,
|
41 |
"_stats_window_size": 100,
|
42 |
+
"ep_info_buffer": null,
|
43 |
+
"ep_success_buffer": null,
|
44 |
+
"_n_updates": 0,
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
"n_steps": 5,
|
46 |
"gamma": 0.99,
|
47 |
"gae_lambda": 1.0,
|
|
|
70 |
"bounded_above": "[ True True True]",
|
71 |
"_np_random": null
|
72 |
},
|
73 |
+
"n_envs": 16
|
74 |
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c7b2e55b9d2524652dd7a7dba0a98d761f3ba58839455894af3d91cd644015c
|
3 |
+
size 687
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ed704d8a9886c9f943b4357d6ef33b99e99589df824f54ae3d09f64d3b572fe
|
3 |
+
size 45886
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -2,6 +2,6 @@
|
|
2 |
- Python: 3.10.6
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
- PyTorch: 2.0.1+cu118
|
5 |
-
- GPU Enabled:
|
6 |
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
|
|
2 |
- Python: 3.10.6
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: False
|
6 |
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7d348a49f880>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d348a4a1a40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690705915785437210, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+tXTPuzSk7ydfBg/+tXTPuzSk7ydfBg/+tXTPuzSk7ydfBg/+tXTPuzSk7ydfBg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARYvDv7vgOL7yT7g9cFLePtVICL/n9DY/SyrHP8Fz2r+GinY/X+MYP+Pzxb/JrL0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD61dM+7NKTvJ18GD+uD7w7jMTVu2BNizz61dM+7NKTvJ18GD+uD7w7jMTVu2BNizz61dM+7NKTvJ18GD+uD7w7jMTVu2BNizz61dM+7NKTvJ18GD+uD7w7jMTVu2BNizyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4137419 -0.01804491 0.59565145]\n [ 0.4137419 -0.01804491 0.59565145]\n [ 0.4137419 -0.01804491 0.59565145]\n [ 0.4137419 -0.01804491 0.59565145]]", "desired_goal": "[[-1.5276877 -0.18054478 0.08999623]\n [ 0.4342227 -0.5323613 0.7146744 ]\n [ 1.5559782 -1.7066575 0.9630512 ]\n [ 0.5972194 -1.5465053 1.4818355 ]]", "observation": "[[ 0.4137419 -0.01804491 0.59565145 0.00573917 -0.00652367 0.01700467]\n [ 0.4137419 -0.01804491 0.59565145 0.00573917 -0.00652367 0.01700467]\n [ 0.4137419 -0.01804491 0.59565145 0.00573917 -0.00652367 0.01700467]\n [ 0.4137419 -0.01804491 0.59565145 0.00573917 -0.00652367 0.01700467]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAie1ROwWcGj237ZA+/bvgPGVKfTxFXTc+APUUvhkJXjyWxHc+djCKvcS1BL0IeUE8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.00320325 0.03774645 0.28306362]\n [ 0.02743339 0.01545963 0.17906673]\n [-0.14546585 0.01355197 0.24196085]\n [-0.06747524 -0.03239991 0.01180864]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjXxe8dSj/b+UhpRSlIwBbJRLMowBdJRHQKb9Cgq3Eyd1fZQoaAZoCWgPQwhQNXo1QEkFwJSGlFKUaBVLMmgWR0Cm/MhikO7QdX2UKGgGaAloD0MIjgOvljuzFMCUhpRSlGgVSzJoFkdApvyIeNkvsnV9lChoBmgJaA9DCD6UaMnjWRfAlIaUUpRoFUsyaBZHQKb8TD1oQFt1fZQoaAZoCWgPQwjF/x1RoTodwJSGlFKUaBVLMmgWR0Cm/j2AXl8xdX2UKGgGaAloD0MInbzIBPza/L+UhpRSlGgVSzJoFkdApv363I+4b3V9lChoBmgJaA9DCL1w58JIr/G/lIaUUpRoFUsyaBZHQKb9uq4pc5d1fZQoaAZoCWgPQwgtJ6H0hSgkwJSGlFKUaBVLMmgWR0Cm/X3vphWpdX2UKGgGaAloD0MIXmkZqfcUBcCUhpRSlGgVSzJoFkdApv/Axgy/K3V9lChoBmgJaA9DCLwhjQqc3BLAlIaUUpRoFUsyaBZHQKb/flPrOZ91fZQoaAZoCWgPQwjVWpiFdi4EwJSGlFKUaBVLMmgWR0Cm/z4lIEr5dX2UKGgGaAloD0MIvjCZKhh1A8CUhpRSlGgVSzJoFkdApv8B+z+m33V9lChoBmgJaA9DCExQw7ewHhDAlIaUUpRoFUsyaBZHQKcA6GyHEdh1fZQoaAZoCWgPQwjzxklh3lMiwJSGlFKUaBVLMmgWR0CnAKYNAkcCdX2UKGgGaAloD0MIV+2akNaY/b+UhpRSlGgVSzJoFkdApwBlIZqEe3V9lChoBmgJaA9DCGsNpfYiqhTAlIaUUpRoFUsyaBZHQKcAKEhaC+V1fZQoaAZoCWgPQwh6ibFMvyQSwJSGlFKUaBVLMmgWR0CnAhdFWn0kdX2UKGgGaAloD0MI+MQ6Vb5n/r+UhpRSlGgVSzJoFkdApwHU8NhE0HV9lChoBmgJaA9DCADK372jNhvAlIaUUpRoFUsyaBZHQKcBlBDXvph1fZQoaAZoCWgPQwivIqMDkkAUwJSGlFKUaBVLMmgWR0CnAVfg75mAdX2UKGgGaAloD0MIgGH5822BHcCUhpRSlGgVSzJoFkdApwPcC3gDR3V9lChoBmgJaA9DCKSl8naEU/6/lIaUUpRoFUsyaBZHQKcDm57PY4B1fZQoaAZoCWgPQwhBLQYP0777v5SGlFKUaBVLMmgWR0CnA1wMx46fdX2UKGgGaAloD0MIE7cKYqA7GsCUhpRSlGgVSzJoFkdApwMgMOPNmnV9lChoBmgJaA9DCCocQSrFTvy/lIaUUpRoFUsyaBZHQKcF5A6+36R1fZQoaAZoCWgPQwgz4CwlyykIwJSGlFKUaBVLMmgWR0CnBaHmRvFWdX2UKGgGaAloD0MImWIOgo4WHMCUhpRSlGgVSzJoFkdApwVhxWDHwXV9lChoBmgJaA9DCLItA85S8vy/lIaUUpRoFUsyaBZHQKcFJa6BiCt1fZQoaAZoCWgPQwjT3uALk8kDwJSGlFKUaBVLMmgWR0CnB70aIeo2dX2UKGgGaAloD0MIz/QSY5meEMCUhpRSlGgVSzJoFkdApwd7e0ojOnV9lChoBmgJaA9DCAuW6gJeZhjAlIaUUpRoFUsyaBZHQKcHO2bXpW51fZQoaAZoCWgPQwg4+MJkqqAPwJSGlFKUaBVLMmgWR0CnBv9eQdS3dX2UKGgGaAloD0MIn6ut2F82HcCUhpRSlGgVSzJoFkdApwkCfe1rqXV9lChoBmgJaA9DCJJB7iJM0R7AlIaUUpRoFUsyaBZHQKcIv+vQnhN1fZQoaAZoCWgPQwiKdD+nII8VwJSGlFKUaBVLMmgWR0CnCH8HWz4UdX2UKGgGaAloD0MIzhYQWg8/DsCUhpRSlGgVSzJoFkdApwhClrM1THV9lChoBmgJaA9DCPFHUWfuMRLAlIaUUpRoFUsyaBZHQKcKH0aqCH11fZQoaAZoCWgPQwhI36RpUCQWwJSGlFKUaBVLMmgWR0CnCdzHCGeudX2UKGgGaAloD0MIkdYYdEJoB8CUhpRSlGgVSzJoFkdApwmb1h9b5nV9lChoBmgJaA9DCBXJVwIp8fK/lIaUUpRoFUsyaBZHQKcJXvv0AcV1fZQoaAZoCWgPQwjWGkrtRTT5v5SGlFKUaBVLMmgWR0CnC0c5bQkYdX2UKGgGaAloD0MIDfrS2587F8CUhpRSlGgVSzJoFkdApwsEeMhounV9lChoBmgJaA9DCEtzK4TVCCDAlIaUUpRoFUsyaBZHQKcKw5CF9KF1fZQoaAZoCWgPQwgSg8DKoUX/v5SGlFKUaBVLMmgWR0CnCoanzg/DdX2UKGgGaAloD0MI7UYf8wGBDMCUhpRSlGgVSzJoFkdApwxZzcRDkXV9lChoBmgJaA9DCHwo0ZLH8xbAlIaUUpRoFUsyaBZHQKcMFyGzru91fZQoaAZoCWgPQwhGKLaCpgUNwJSGlFKUaBVLMmgWR0CnC9Y6fapQdX2UKGgGaAloD0MI8Ps3L04cD8CUhpRSlGgVSzJoFkdApwuZPl+3IHV9lChoBmgJaA9DCBnmBG1ymAnAlIaUUpRoFUsyaBZHQKcNZqBVdX11fZQoaAZoCWgPQwhtq1lnfM8ewJSGlFKUaBVLMmgWR0CnDSQIMSbpdX2UKGgGaAloD0MIdjbknxk0EcCUhpRSlGgVSzJoFkdApwzjO5avBHV9lChoBmgJaA9DCLoVwmosIQbAlIaUUpRoFUsyaBZHQKcMpgkTpPh1fZQoaAZoCWgPQwg3cXK/QyEawJSGlFKUaBVLMmgWR0CnDnnktEofdX2UKGgGaAloD0MI/tE3aRoUEcCUhpRSlGgVSzJoFkdApw43WFvhqHV9lChoBmgJaA9DCECk374OXBnAlIaUUpRoFUsyaBZHQKcN9t+Csfd1fZQoaAZoCWgPQwgMXB5rRuYZwJSGlFKUaBVLMmgWR0CnDboNNJvpdX2UKGgGaAloD0MISl8IOe9/CcCUhpRSlGgVSzJoFkdApw+Y2/BWP3V9lChoBmgJaA9DCHXmHhK+twTAlIaUUpRoFUsyaBZHQKcPVj0cwQF1fZQoaAZoCWgPQwgLXYlA9Y8QwJSGlFKUaBVLMmgWR0CnDxUmD15CdX2UKGgGaAloD0MI8s8M4gObGMCUhpRSlGgVSzJoFkdApw7YOBlMAXV9lChoBmgJaA9DCBo2yvrNxP2/lIaUUpRoFUsyaBZHQKcQz1wo9cN1fZQoaAZoCWgPQwiWICOgwpEFwJSGlFKUaBVLMmgWR0CnEI2ZiNKidX2UKGgGaAloD0MI6wHzkClPEMCUhpRSlGgVSzJoFkdApxBMtqYZ23V9lChoBmgJaA9DCKHa4ET0iwrAlIaUUpRoFUsyaBZHQKcQD+1Bt1p1fZQoaAZoCWgPQwjkoISZtu8QwJSGlFKUaBVLMmgWR0CnEglvZRKpdX2UKGgGaAloD0MIYAZjRKJQ+L+UhpRSlGgVSzJoFkdApxHG3Sa3JHV9lChoBmgJaA9DCAJnKVlOAvm/lIaUUpRoFUsyaBZHQKcRhtb9qDd1fZQoaAZoCWgPQwj0v1yLFkAGwJSGlFKUaBVLMmgWR0CnEUnh0hePdX2UKGgGaAloD0MI9katMH1fJcCUhpRSlGgVSzJoFkdApxMlchTwUnV9lChoBmgJaA9DCBjpRe1+/SHAlIaUUpRoFUsyaBZHQKcS4t1ZDAt1fZQoaAZoCWgPQwjl795RY6IQwJSGlFKUaBVLMmgWR0CnEqHQID5kdX2UKGgGaAloD0MIP5C8cyhD+r+UhpRSlGgVSzJoFkdApxJk4vN/v3V9lChoBmgJaA9DCPZhvVErjArAlIaUUpRoFUsyaBZHQKcUeEg4ffZ1fZQoaAZoCWgPQwjKUYAomHEHwJSGlFKUaBVLMmgWR0CnFDXmmtQsdX2UKGgGaAloD0MI393KEp1VHMCUhpRSlGgVSzJoFkdApxP00xdpqXV9lChoBmgJaA9DCJ33/3HCxP+/lIaUUpRoFUsyaBZHQKcTuGnGbTd1fZQoaAZoCWgPQwjNk2sKZGYWwJSGlFKUaBVLMmgWR0CnFY4TTOPedX2UKGgGaAloD0MIUyXK3lLOEcCUhpRSlGgVSzJoFkdApxVLjkuHvnV9lChoBmgJaA9DCGFT51Hx7xjAlIaUUpRoFUsyaBZHQKcVCrCm/Fl1fZQoaAZoCWgPQwhfYizTL4EWwJSGlFKUaBVLMmgWR0CnFM3nIQvpdX2UKGgGaAloD0MIchk3NdC8IMCUhpRSlGgVSzJoFkdApxahvNu+AXV9lChoBmgJaA9DCPmHLT2aKgTAlIaUUpRoFUsyaBZHQKcWXz+3pfR1fZQoaAZoCWgPQwi3XtODglIMwJSGlFKUaBVLMmgWR0CnFh6HCXQddX2UKGgGaAloD0MI02weh8H8A8CUhpRSlGgVSzJoFkdApxXhpxm03XV9lChoBmgJaA9DCMEBLV3BtgnAlIaUUpRoFUsyaBZHQKcXtPfsNUh1fZQoaAZoCWgPQwg4E9OFWD0KwJSGlFKUaBVLMmgWR0CnF3IrOJLvdX2UKGgGaAloD0MIjq1nCMcMB8CUhpRSlGgVSzJoFkdApxcx8v24/nV9lChoBmgJaA9DCOq0boPaL/6/lIaUUpRoFUsyaBZHQKcW9TQVsUJ1fZQoaAZoCWgPQwhqTfOOUzQVwJSGlFKUaBVLMmgWR0CnGLG34Kx+dX2UKGgGaAloD0MIN/5EZcNaH8CUhpRSlGgVSzJoFkdApxhvHcUM5XV9lChoBmgJaA9DCGfWUkDaDxHAlIaUUpRoFUsyaBZHQKcYLiiqQzV1fZQoaAZoCWgPQwh+HqM88/IawJSGlFKUaBVLMmgWR0CnF/EPMB6sdX2UKGgGaAloD0MIrHR3nQ35DcCUhpRSlGgVSzJoFkdApxmssYl6aHV9lChoBmgJaA9DCJbOh2cJohnAlIaUUpRoFUsyaBZHQKcZah11W811fZQoaAZoCWgPQwiBd/LpsW0IwJSGlFKUaBVLMmgWR0CnGSj3/PxAdX2UKGgGaAloD0MIjnQGRl6mHsCUhpRSlGgVSzJoFkdApxjsFY+0PnV9lChoBmgJaA9DCIS6SKEsHBTAlIaUUpRoFUsyaBZHQKcauzi0fHR1fZQoaAZoCWgPQwjg9ZmzPoUhwJSGlFKUaBVLMmgWR0CnGnjlYEGJdX2UKGgGaAloD0MIwQDChxItA8CUhpRSlGgVSzJoFkdApxo3w5NoJ3V9lChoBmgJaA9DCBPx1vm3iwbAlIaUUpRoFUsyaBZHQKcZ+sYl6Z91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78f182aed510>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78f182ad3cc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 0, "_total_timesteps": 0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": null, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": null, "_last_episode_starts": null, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 1, "_stats_window_size": 100, "ep_info_buffer": null, "ep_success_buffer": null, "_n_updates": 0, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 16, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -8.256617883965372, "std_reward": 3.005049078367665, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-30T10:53:59.277979"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90bd3d0d18e5d143d4a31c49f50889d0873e599738425797981b5a2688651939
|
3 |
+
size 2374
|