ppo-LunarLander-v0 / config.json
pratsy's picture
Upload PPO LunarLander-v2 trained agent
098fc70
raw
history blame
13.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fced6035990>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fced6035a20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fced6035ab0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fced6035b40>", "_build": "<function ActorCriticPolicy._build at 0x7fced6035bd0>", "forward": "<function ActorCriticPolicy.forward at 0x7fced6035c60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fced6035cf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fced6035d80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fced6035e10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fced6035ea0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fced6035f30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fced6035fc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fced6a3c380>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688052953779543631, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM08IzsKqXa7uQOOPFkGezwEWJ48FmpYvQAAgD8AAIA/ABCJvMHtqrymeoA9fx4HPcC5Dr4T+1y8AACAPwAAgD+aw6W80xIcP7kIor0ZZQ+/K+QQPMR1w70AAAAAAAAAAJrlijxx9lW7LkLJuyu4jjzkG6E8k4V0vQAAgD8AAIA/ZjJAPpr17j47mtO+CbsJv2nTGD7iEZu+AAAAAAAAAABmYZa8SEObuucXNT2WoCizIBStujY/TrMAAIA/AACAP83Ji7ypcRy8oC1QPTn+rTwY6O27qt1cuwAAgD8AAIA/dlBcvry5Lz6YjN4+Tx2nvg9yjr1cWDk+AAAAAAAAAABAGxE+35l5P87T4jy39Ru/E8OiPk6pyr0AAAAAAAAAAM18z7pfMIM/bTaLu/xJH79ffLY9rX5FPQAAAAAAAAAATYYjvVvNgz9rCMK9kgcsv/BznjyFXEO9AAAAAAAAAACNcPa9jVGsP/Ph476Xh+e+y97LvYLzdL0AAAAAAAAAAM09oDwC7Bw/2p8FvqVNC7+X3fE8d527vQAAAAAAAAAAxioIvrJRiz8y7fe+c5xBv13NLr4KRmS+AAAAAAAAAAAzbOK8OzyePyCHc71iZyK/uleSPc87G70AAAAAAAAAAAA6Nz38Fg0/Y7onvv04Bb8CAO26883xvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCBytq59VqMAWyUS9yMAXSUR0C4GQEyDZlGdX2UKGgGR0BzayCI1tO3aAdL2WgIR0C4GRDER8MNdX2UKGgGR0BwtDS4OMESaAdL1WgIR0C4GS9jwx33dX2UKGgGR0Bx9XSpiqhlaAdLwGgIR0C4GTJCBwuNdX2UKGgGR0BxD9r2xptaaAdLwGgIR0C4GTzQzDXOdX2UKGgGR0Bxmh0nw5NoaAdLrWgIR0C4GTqtHQQddX2UKGgGR0Bx1wnlXA/LaAdLvGgIR0C4GUzPrv9cdX2UKGgGR0BxeMXN1QqJaAdL2GgIR0C4GV4MF2V3dX2UKGgGR0Bx63o0Q9RraAdLqmgIR0C4GXMS5AhTdX2UKGgGR0BymudYnv2HaAdL3WgIR0C4GXsB2fTTdX2UKGgGR0BxJYc4o7V8aAdL1GgIR0C4GY5AhStOdX2UKGgGR0BxD+Ei+tbLaAdLv2gIR0C4Gat2X9iudX2UKGgGR0BzgbjGT9sKaAdL6WgIR0C4GdsX7+DOdX2UKGgGR0BzKk1R+BpYaAdLyWgIR0C4Gj7sv7FbdX2UKGgGR0BvLDVDrqt6aAdLs2gIR0C4GkzPjXFtdX2UKGgGR0Bvsc+7lJYlaAdL4GgIR0C4Gk0M1CPZdX2UKGgGR0BwwmVTrE9/aAdLwWgIR0C4GmGecx0udX2UKGgGR0BzJQzwc5sCaAdNDwFoCEdAuBpoZQ53knV9lChoBkdAcbGovi97GGgHS9NoCEdAuBpx3V09yXV9lChoBkdAcFtYBvJiiWgHS8VoCEdAuBp81n/T9nV9lChoBkdAcFPdDpkf92gHS8toCEdAuBqZS1mapnV9lChoBkdAbvdBgNPP9mgHS79oCEdAuCANElVtGnV9lChoBkdAcrw0D2alUWgHS8FoCEdAuCAYynDR+nV9lChoBkdAcibD7ZWaMWgHTQ8BaAhHQLggQkbPyCp1fZQoaAZHQHOKw/1QIldoB0u9aAhHQLggRtVJcxF1fZQoaAZHQHA5tjbzshRoB0vZaAhHQLggUKjSG8F1fZQoaAZHQGQR23KB/ZxoB03oA2gIR0C4IFXfAKv3dX2UKGgGR0Bwzadz4k/saAdL1GgIR0C4IJTGxUvPdX2UKGgGR0BzFYI9kjHGaAdLt2gIR0C4INJyhi9adX2UKGgGR0Bx8GAhB7eEaAdLwmgIR0C4IORxkupTdX2UKGgGR0BzrLn6l+EzaAdLzmgIR0C4IOyLhrFgdX2UKGgGR0BzLm8CgbqAaAdLvWgIR0C4IPD7ZWaMdX2UKGgGR0Bw2j59E1EWaAdLsGgIR0C4IPXGKhtcdX2UKGgGR0ByfzSy+pOvaAdLwWgIR0C4IQUOmR/3dX2UKGgGR0ByKlFVktmMaAdLzGgIR0C4IQtmYjSodX2UKGgGR0ByE1qASWZ7aAdLymgIR0C4ITJE6T4ddX2UKGgGR0BzJU+IMz/IaAdLzGgIR0C4IToYR/VidX2UKGgGR0Byl31mJ3xGaAdLsWgIR0C4IVbOVxCIdX2UKGgGR0By82CQLeANaAdLxmgIR0C4IWKGpMpPdX2UKGgGR0BwyizPa+N+aAdLzGgIR0C4IW6dlNDddX2UKGgGR0BzWNsHjZL7aAdL8WgIR0C4IXx0MgEEdX2UKGgGR0BzRnpW3jMnaAdL42gIR0C4IZpiNKh+dX2UKGgGR0BxLqBQN0/4aAdLvmgIR0C4IannQpnZdX2UKGgGR0BxON4u9OARaAdLtWgIR0C4Ie+ndfsvdX2UKGgGR0BzOt5KODJ2aAdLuGgIR0C4If5t78ekdX2UKGgGR0BxDopy6tknaAdL0mgIR0C4IgTuKGcndX2UKGgGR0BwzXRmbsniaAdLz2gIR0C4IhC0KJEZdX2UKGgGR0Bx2xV3ljmTaAdLyGgIR0C4IhFdC3PSdX2UKGgGR0BzfsQ176YWaAdLwGgIR0C4IiCqQzUJdX2UKGgGR0BxPyQcPvroaAdLtGgIR0C4Ij+xrzoVdX2UKGgGR0Bz70+fRNRFaAdL92gIR0C4ImcuvlltdX2UKGgGR0BysBaq0dBCaAdL1WgIR0C4ImdX1anrdX2UKGgGR0Bxobcj7hvSaAdLyGgIR0C4InsjiXIEdX2UKGgGR0Bx81PykKu0aAdLzGgIR0C4IoxzmwJPdX2UKGgGR0BzskIomXw9aAdLzmgIR0C4IqckleF+dX2UKGgGR0BzLXuDzyz5aAdL3WgIR0C4IrCc0+C9dX2UKGgGR0BwdASteUpvaAdLyWgIR0C4Ir571Iy1dX2UKGgGR0BzLh2/zreJaAdLs2gIR0C4IvUVJtiydX2UKGgGR0Bx5rPu5SWJaAdL8mgIR0C4Iwzb349HdX2UKGgGR0Bzn9eY2Kl6aAdLymgIR0C4IzlV1fVqdX2UKGgGR0BvcT3VTaTPaAdL0mgIR0C4IzlbA1vVdX2UKGgGR0BxWAMNMGoraAdL6mgIR0C4I2yKFZgYdX2UKGgGR0Bwp9zU7Sy/aAdLy2gIR0C4I3ExEfDDdX2UKGgGR0Bz31pj+aScaAdLtGgIR0C4I3gjlgc+dX2UKGgGR0BzRjUI9kjHaAdL6WgIR0C4I37876pHdX2UKGgGR0BzVdNfw7T2aAdNEwFoCEdAuCOarFOwgXV9lChoBkdAcBzgLqlgt2gHS8ZoCEdAuCOnNwBHTnV9lChoBkdAdHICmMwUQGgHS9ZoCEdAuCOtruYx+XV9lChoBkdAcFXJv5xiomgHS8poCEdAuCPAbm2b5XV9lChoBkdAcncftx+8XmgHS7loCEdAuCPDAi3XqnV9lChoBkdAc3MCW/rSmmgHS9RoCEdAuCPw+mm+CnV9lChoBkdAcVX9QXQ+lmgHS8toCEdAuCPyajN6gXV9lChoBkdAcG7xWDHwPWgHS8JoCEdAuCQ0/hVENXV9lChoBkdAcaqATIvJzWgHS9JoCEdAuCQ2KoAGS3V9lChoBkdAYZrVYISlFmgHTegDaAhHQLgkSR/ViF11fZQoaAZHQHCSpWeYlY5oB0u7aAhHQLgkVYNRWLh1fZQoaAZHQHAvxScbzbxoB0vJaAhHQLgkaK8L8aZ1fZQoaAZHQHEDe8scyWRoB0uxaAhHQLgkdzf779B1fZQoaAZHQHH7gkcCHRFoB0uyaAhHQLgkhOjqOcV1fZQoaAZHQG+kCGnGbTdoB0u2aAhHQLgkoyyD7Il1fZQoaAZHQG6CBJI1+ApoB0vUaAhHQLgkr5H3Del1fZQoaAZHQHHF9uYQarFoB0vbaAhHQLgkr45tFa11fZQoaAZHQHMTWALApKBoB0uqaAhHQLgkt8JD3M91fZQoaAZHQHL9j/lyR0VoB0u+aAhHQLgkufDUExJ1fZQoaAZHQHLhYQe3hGZoB0uuaAhHQLgk5vyLAHp1fZQoaAZHQHNYink1dgRoB0vmaAhHQLgk8pMYdhl1fZQoaAZHQHFqWsq8UVVoB0vvaAhHQLglDmRNh3J1fZQoaAZHQHOMj0L+glFoB0vPaAhHQLglFC53C9B1fZQoaAZHQHEQMDwH7gtoB0uoaAhHQLglGWM0gr91fZQoaAZHQHFSzKYAsCloB0u3aAhHQLglSVfeDWd1fZQoaAZHQHB41Xq7iAFoB0vfaAhHQLglZQRPGhp1fZQoaAZHQHBPojW07bNoB0uxaAhHQLglZdsSCe51fZQoaAZHQHH824iHIp9oB0vJaAhHQLgld94NZvF1fZQoaAZHQHLAp1FH8TBoB0vraAhHQLgliPVd5Y51fZQoaAZHQHF8i1uzhP1oB0uwaAhHQLglj96C17Z1fZQoaAZHQHF63KnvUjNoB0uzaAhHQLglqIPbwjN1fZQoaAZHQHMB9MTN+spoB0vdaAhHQLglrQqI7/51fZQoaAZHQHIjmWyC4BpoB0u/aAhHQLglrknkT6B1fZQoaAZHQG4fdjPOY6ZoB0u8aAhHQLglshOxjax1fZQoaAZHQG8KmfPHDJloB0vEaAhHQLgltMoMKCx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1472, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}