{ "name": "root", "gauges": { "Pyramids.Policy.Entropy.mean": { "value": 0.1264774203300476, "min": 0.12133873254060745, "max": 1.469253420829773, "count": 100 }, "Pyramids.Policy.Entropy.sum": { "value": 3784.204345703125, "min": 3669.283203125, "max": 44571.2734375, "count": 100 }, "Pyramids.Step.mean": { "value": 2999906.0, "min": 29986.0, "max": 2999906.0, "count": 100 }, "Pyramids.Step.sum": { "value": 2999906.0, "min": 29986.0, "max": 2999906.0, "count": 100 }, "Pyramids.Policy.ExtrinsicValueEstimate.mean": { "value": 0.82927405834198, "min": -0.07572072744369507, "max": 0.9394945502281189, "count": 100 }, "Pyramids.Policy.ExtrinsicValueEstimate.sum": { "value": 250.44076538085938, "min": -18.021533966064453, "max": 295.00128173828125, "count": 100 }, "Pyramids.Policy.RndValueEstimate.mean": { "value": -0.006171045824885368, "min": -0.019276633858680725, "max": 0.22240948677062988, "count": 100 }, "Pyramids.Policy.RndValueEstimate.sum": { "value": -1.8636558055877686, "min": -5.956480026245117, "max": 52.93345642089844, "count": 100 }, "Pyramids.Losses.PolicyLoss.mean": { "value": 0.0692730050572815, "min": 0.06380657659869433, "max": 0.07588517239185673, "count": 100 }, "Pyramids.Losses.PolicyLoss.sum": { "value": 1.0390950758592226, "min": 0.5608416392517092, "max": 1.0846602109183245, "count": 100 }, "Pyramids.Losses.ValueLoss.mean": { "value": 0.015756846436609826, "min": 0.0003106717606486122, "max": 0.017262691297504466, "count": 100 }, "Pyramids.Losses.ValueLoss.sum": { "value": 0.23635269654914737, "min": 0.003728061127783346, "max": 0.24167767816506253, "count": 100 }, "Pyramids.Policy.LearningRate.mean": { "value": 1.5075461641844428e-06, "min": 1.5075461641844428e-06, "max": 0.00029825500058166664, "count": 100 }, "Pyramids.Policy.LearningRate.sum": { "value": 2.2613192462766642e-05, "min": 2.2613192462766642e-05, "max": 0.0038843992052002988, "count": 100 }, "Pyramids.Policy.Epsilon.mean": { "value": 0.10050248222222224, "min": 0.10050248222222224, "max": 0.19941833333333336, "count": 100 }, "Pyramids.Policy.Epsilon.sum": { "value": 1.5075372333333337, "min": 1.4213532666666668, "max": 2.752449433333333, "count": 100 }, "Pyramids.Policy.Beta.mean": { "value": 6.019797399999995e-05, "min": 6.019797399999995e-05, "max": 0.009941891500000001, "count": 100 }, "Pyramids.Policy.Beta.sum": { "value": 0.0009029696099999993, "min": 0.0009029696099999993, "max": 0.12949049003000002, "count": 100 }, "Pyramids.Losses.RNDLoss.mean": { "value": 0.0068528493866324425, "min": 0.006573980208486319, "max": 0.4045696258544922, "count": 100 }, "Pyramids.Losses.RNDLoss.sum": { "value": 0.10279273986816406, "min": 0.09203572571277618, "max": 3.2365570068359375, "count": 100 }, "Pyramids.Environment.EpisodeLength.mean": { "value": 216.3985507246377, "min": 190.873417721519, "max": 999.0, "count": 100 }, "Pyramids.Environment.EpisodeLength.sum": { "value": 29863.0, "min": 17424.0, "max": 32499.0, "count": 100 }, "Pyramids.Environment.CumulativeReward.mean": { "value": 1.7836014364940533, "min": -0.9999742459866309, "max": 1.8086751463117114, "count": 100 }, "Pyramids.Environment.CumulativeReward.sum": { "value": 246.13699823617935, "min": -30.999201625585556, "max": 283.9619979709387, "count": 100 }, "Pyramids.Policy.ExtrinsicReward.mean": { "value": 1.7836014364940533, "min": -0.9999742459866309, "max": 1.8086751463117114, "count": 100 }, "Pyramids.Policy.ExtrinsicReward.sum": { "value": 246.13699823617935, "min": -30.999201625585556, "max": 283.9619979709387, "count": 100 }, "Pyramids.Policy.RndReward.mean": { "value": 0.015425271291346491, "min": 0.013571335901013148, "max": 8.68073938952552, "count": 100 }, "Pyramids.Policy.RndReward.sum": { "value": 2.128687438205816, "min": 1.9685758271371014, "max": 156.25330901145935, "count": 100 }, "Pyramids.IsTraining.mean": { "value": 1.0, "min": 1.0, "max": 1.0, "count": 100 }, "Pyramids.IsTraining.sum": { "value": 1.0, "min": 1.0, "max": 1.0, "count": 100 } }, "metadata": { "timer_format_version": "0.1.0", "start_time_seconds": "1690692381", "python_version": "3.10.6 (main, May 29 2023, 11:10:38) [GCC 11.3.0]", "command_line_arguments": "/usr/local/bin/mlagents-learn ./config/ppo/PyramidsRND.yaml --env=./training-envs-executables/linux/Pyramids/Pyramids --run-id=Pyramids Training --no-graphics", "mlagents_version": "0.31.0.dev0", "mlagents_envs_version": "0.31.0.dev0", "communication_protocol_version": "1.5.0", "pytorch_version": "1.11.0+cu102", "numpy_version": "1.21.2", "end_time_seconds": "1690700057" }, "total": 7676.823282195, "count": 1, "self": 0.487801053000112, "children": { "run_training.setup": { "total": 0.030912136999859285, "count": 1, "self": 0.030912136999859285 }, "TrainerController.start_learning": { "total": 7676.304569004999, "count": 1, "self": 4.2867465459448795, "children": { "TrainerController._reset_env": { "total": 4.08383707400003, "count": 1, "self": 4.08383707400003 }, "TrainerController.advance": { "total": 7667.823578430056, "count": 196063, "self": 4.122779525214355, "children": { "env_step": { "total": 5652.029589080801, "count": 196063, "self": 5320.917782719641, "children": { "SubprocessEnvManager._take_step": { "total": 328.57825031113384, "count": 196063, "self": 14.379911542333502, "children": { "TorchPolicy.evaluate": { "total": 314.19833876880034, "count": 187552, "self": 314.19833876880034 } } }, "workers": { "total": 2.533556050026391, "count": 196063, "self": 0.0, "children": { "worker_root": { "total": 7658.966845051986, "count": 196063, "is_parallel": true, "self": 2695.4243037460483, "children": { "run_training.setup": { "total": 0.0, "count": 0, "is_parallel": true, "self": 0.0, "children": { "steps_from_proto": { "total": 0.0016969280000012077, "count": 1, "is_parallel": true, "self": 0.0005536460000712395, "children": { "_process_rank_one_or_two_observation": { "total": 0.0011432819999299682, "count": 8, "is_parallel": true, "self": 0.0011432819999299682 } } }, "UnityEnvironment.step": { "total": 0.05080075599994416, "count": 1, "is_parallel": true, "self": 0.0005387559999689984, "children": { "UnityEnvironment._generate_step_input": { "total": 0.0005018159999963245, "count": 1, "is_parallel": true, "self": 0.0005018159999963245 }, "communicator.exchange": { "total": 0.04797005299997181, "count": 1, "is_parallel": true, "self": 0.04797005299997181 }, "steps_from_proto": { "total": 0.0017901310000070225, "count": 1, "is_parallel": true, "self": 0.00034264900000380294, "children": { "_process_rank_one_or_two_observation": { "total": 0.0014474820000032196, "count": 8, "is_parallel": true, "self": 0.0014474820000032196 } } } } } } }, "UnityEnvironment.step": { "total": 4963.542541305937, "count": 196062, "is_parallel": true, "self": 103.71747368603246, "children": { "UnityEnvironment._generate_step_input": { "total": 68.94208805377593, "count": 196062, "is_parallel": true, "self": 68.94208805377593 }, "communicator.exchange": { "total": 4481.419380136015, "count": 196062, "is_parallel": true, "self": 4481.419380136015 }, "steps_from_proto": { "total": 309.4635994301145, "count": 196062, "is_parallel": true, "self": 62.81913088212218, "children": { "_process_rank_one_or_two_observation": { "total": 246.64446854799235, "count": 1568496, "is_parallel": true, "self": 246.64446854799235 } } } } } } } } } } }, "trainer_advance": { "total": 2011.6712098240403, "count": 196063, "self": 8.25805797199314, "children": { "process_trajectory": { "total": 347.73920588205806, "count": 196063, "self": 347.07214390705917, "children": { "RLTrainer._checkpoint": { "total": 0.6670619749988873, "count": 6, "self": 0.6670619749988873 } } }, "_update_policy": { "total": 1655.673945969989, "count": 1399, "self": 1077.678762597906, "children": { "TorchPPOOptimizer.update": { "total": 577.9951833720831, "count": 68358, "self": 577.9951833720831 } } } } } } }, "trainer_threads": { "total": 8.78999344422482e-07, "count": 1, "self": 8.78999344422482e-07 }, "TrainerController._save_models": { "total": 0.11040607599898067, "count": 1, "self": 0.0014532119985233294, "children": { "RLTrainer._checkpoint": { "total": 0.10895286400045734, "count": 1, "self": 0.10895286400045734 } } } } } } }