praveenku32k commited on
Commit
9d03f01
1 Parent(s): 0be310b

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,515 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L6-v2
3
+ datasets:
4
+ - sentence-transformers/stsb
5
+ language:
6
+ - en
7
+ library_name: sentence-transformers
8
+ metrics:
9
+ - pearson_cosine
10
+ - spearman_cosine
11
+ - pearson_manhattan
12
+ - spearman_manhattan
13
+ - pearson_euclidean
14
+ - spearman_euclidean
15
+ - pearson_dot
16
+ - spearman_dot
17
+ - pearson_max
18
+ - spearman_max
19
+ pipeline_tag: sentence-similarity
20
+ tags:
21
+ - sentence-transformers
22
+ - sentence-similarity
23
+ - feature-extraction
24
+ - generated_from_trainer
25
+ - dataset_size:5749
26
+ - loss:CosineSimilarityLoss
27
+ widget:
28
+ - source_sentence: The man talked to a girl over the internet camera.
29
+ sentences:
30
+ - A group of elderly people pose around a dining table.
31
+ - A teenager talks to a girl over a webcam.
32
+ - There is no 'still' that is not relative to some other object.
33
+ - source_sentence: A woman is writing something.
34
+ sentences:
35
+ - Two eagles are perched on a branch.
36
+ - It refers to the maximum f-stop (which is defined as the ratio of focal length
37
+ to effective aperture diameter).
38
+ - A woman is chopping green onions.
39
+ - source_sentence: The player shoots the winning points.
40
+ sentences:
41
+ - Minimum wage laws hurt the least skilled, least productive the most.
42
+ - The basketball player is about to score points for his team.
43
+ - Sheep are grazing in the field in front of a line of trees.
44
+ - source_sentence: Stars form in star-formation regions, which itself develop from
45
+ molecular clouds.
46
+ sentences:
47
+ - Although I believe Searle is mistaken, I don't think you have found the problem.
48
+ - It may be possible for a solar system like ours to exist outside of a galaxy.
49
+ - A blond-haired child performing on the trumpet in front of a house while his younger
50
+ brother watches.
51
+ - source_sentence: While Queen may refer to both Queen regent (sovereign) or Queen
52
+ consort, the King has always been the sovereign.
53
+ sentences:
54
+ - At first, I thought this is a bit of a tricky question.
55
+ - A man sitting on the floor in a room is strumming a guitar.
56
+ - There is a very good reason not to refer to the Queen's spouse as "King" - because
57
+ they aren't the King.
58
+ model-index:
59
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
60
+ results:
61
+ - task:
62
+ type: semantic-similarity
63
+ name: Semantic Similarity
64
+ dataset:
65
+ name: sts dev
66
+ type: sts-dev
67
+ metrics:
68
+ - type: pearson_cosine
69
+ value: 0.8937895757423139
70
+ name: Pearson Cosine
71
+ - type: spearman_cosine
72
+ value: 0.8933408335166381
73
+ name: Spearman Cosine
74
+ - type: pearson_manhattan
75
+ value: 0.8893270459753304
76
+ name: Pearson Manhattan
77
+ - type: spearman_manhattan
78
+ value: 0.8931680438618355
79
+ name: Spearman Manhattan
80
+ - type: pearson_euclidean
81
+ value: 0.8894951039580792
82
+ name: Pearson Euclidean
83
+ - type: spearman_euclidean
84
+ value: 0.8933408335166381
85
+ name: Spearman Euclidean
86
+ - type: pearson_dot
87
+ value: 0.8937895714961118
88
+ name: Pearson Dot
89
+ - type: spearman_dot
90
+ value: 0.8933411165328404
91
+ name: Spearman Dot
92
+ - type: pearson_max
93
+ value: 0.8937895757423139
94
+ name: Pearson Max
95
+ - type: spearman_max
96
+ value: 0.8933411165328404
97
+ name: Spearman Max
98
+ - task:
99
+ type: semantic-similarity
100
+ name: Semantic Similarity
101
+ dataset:
102
+ name: sts test
103
+ type: sts-test
104
+ metrics:
105
+ - type: pearson_cosine
106
+ value: 0.8567692080604863
107
+ name: Pearson Cosine
108
+ - type: spearman_cosine
109
+ value: 0.8581039412647984
110
+ name: Spearman Cosine
111
+ - type: pearson_manhattan
112
+ value: 0.8539129662613905
113
+ name: Pearson Manhattan
114
+ - type: spearman_manhattan
115
+ value: 0.8559325366695306
116
+ name: Spearman Manhattan
117
+ - type: pearson_euclidean
118
+ value: 0.8559600700692871
119
+ name: Pearson Euclidean
120
+ - type: spearman_euclidean
121
+ value: 0.8581039412647984
122
+ name: Spearman Euclidean
123
+ - type: pearson_dot
124
+ value: 0.8567692052012096
125
+ name: Pearson Dot
126
+ - type: spearman_dot
127
+ value: 0.8581039412647984
128
+ name: Spearman Dot
129
+ - type: pearson_max
130
+ value: 0.8567692080604863
131
+ name: Pearson Max
132
+ - type: spearman_max
133
+ value: 0.8581039412647984
134
+ name: Spearman Max
135
+ ---
136
+
137
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
138
+
139
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
140
+
141
+ ## Model Details
142
+
143
+ ### Model Description
144
+ - **Model Type:** Sentence Transformer
145
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
146
+ - **Maximum Sequence Length:** 256 tokens
147
+ - **Output Dimensionality:** 384 tokens
148
+ - **Similarity Function:** Cosine Similarity
149
+ - **Training Dataset:**
150
+ - [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
151
+ - **Language:** en
152
+ <!-- - **License:** Unknown -->
153
+
154
+ ### Model Sources
155
+
156
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
157
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
158
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
159
+
160
+ ### Full Model Architecture
161
+
162
+ ```
163
+ SentenceTransformer(
164
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
165
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
166
+ (2): Normalize()
167
+ )
168
+ ```
169
+
170
+ ## Usage
171
+
172
+ ### Direct Usage (Sentence Transformers)
173
+
174
+ First install the Sentence Transformers library:
175
+
176
+ ```bash
177
+ pip install -U sentence-transformers
178
+ ```
179
+
180
+ Then you can load this model and run inference.
181
+ ```python
182
+ from sentence_transformers import SentenceTransformer
183
+
184
+ # Download from the 🤗 Hub
185
+ model = SentenceTransformer("praveenku32k/all-MiniLM-L6-v2-sts")
186
+ # Run inference
187
+ sentences = [
188
+ 'While Queen may refer to both Queen regent (sovereign) or Queen consort, the King has always been the sovereign.',
189
+ 'There is a very good reason not to refer to the Queen\'s spouse as "King" - because they aren\'t the King.',
190
+ 'A man sitting on the floor in a room is strumming a guitar.',
191
+ ]
192
+ embeddings = model.encode(sentences)
193
+ print(embeddings.shape)
194
+ # [3, 384]
195
+
196
+ # Get the similarity scores for the embeddings
197
+ similarities = model.similarity(embeddings, embeddings)
198
+ print(similarities.shape)
199
+ # [3, 3]
200
+ ```
201
+
202
+ <!--
203
+ ### Direct Usage (Transformers)
204
+
205
+ <details><summary>Click to see the direct usage in Transformers</summary>
206
+
207
+ </details>
208
+ -->
209
+
210
+ <!--
211
+ ### Downstream Usage (Sentence Transformers)
212
+
213
+ You can finetune this model on your own dataset.
214
+
215
+ <details><summary>Click to expand</summary>
216
+
217
+ </details>
218
+ -->
219
+
220
+ <!--
221
+ ### Out-of-Scope Use
222
+
223
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
224
+ -->
225
+
226
+ ## Evaluation
227
+
228
+ ### Metrics
229
+
230
+ #### Semantic Similarity
231
+ * Dataset: `sts-dev`
232
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
233
+
234
+ | Metric | Value |
235
+ |:--------------------|:-----------|
236
+ | pearson_cosine | 0.8938 |
237
+ | **spearman_cosine** | **0.8933** |
238
+ | pearson_manhattan | 0.8893 |
239
+ | spearman_manhattan | 0.8932 |
240
+ | pearson_euclidean | 0.8895 |
241
+ | spearman_euclidean | 0.8933 |
242
+ | pearson_dot | 0.8938 |
243
+ | spearman_dot | 0.8933 |
244
+ | pearson_max | 0.8938 |
245
+ | spearman_max | 0.8933 |
246
+
247
+ #### Semantic Similarity
248
+ * Dataset: `sts-test`
249
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
250
+
251
+ | Metric | Value |
252
+ |:--------------------|:-----------|
253
+ | pearson_cosine | 0.8568 |
254
+ | **spearman_cosine** | **0.8581** |
255
+ | pearson_manhattan | 0.8539 |
256
+ | spearman_manhattan | 0.8559 |
257
+ | pearson_euclidean | 0.856 |
258
+ | spearman_euclidean | 0.8581 |
259
+ | pearson_dot | 0.8568 |
260
+ | spearman_dot | 0.8581 |
261
+ | pearson_max | 0.8568 |
262
+ | spearman_max | 0.8581 |
263
+
264
+ <!--
265
+ ## Bias, Risks and Limitations
266
+
267
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
268
+ -->
269
+
270
+ <!--
271
+ ### Recommendations
272
+
273
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
274
+ -->
275
+
276
+ ## Training Details
277
+
278
+ ### Training Dataset
279
+
280
+ #### sentence-transformers/stsb
281
+
282
+ * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
283
+ * Size: 5,749 training samples
284
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
285
+ * Approximate statistics based on the first 1000 samples:
286
+ | | sentence1 | sentence2 | score |
287
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
288
+ | type | string | string | float |
289
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
290
+ * Samples:
291
+ | sentence1 | sentence2 | score |
292
+ |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
293
+ | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
294
+ | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
295
+ | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
296
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
297
+ ```json
298
+ {
299
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
300
+ }
301
+ ```
302
+
303
+ ### Evaluation Dataset
304
+
305
+ #### sentence-transformers/stsb
306
+
307
+ * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
308
+ * Size: 1,500 evaluation samples
309
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
310
+ * Approximate statistics based on the first 1000 samples:
311
+ | | sentence1 | sentence2 | score |
312
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
313
+ | type | string | string | float |
314
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
315
+ * Samples:
316
+ | sentence1 | sentence2 | score |
317
+ |:--------------------------------------------------|:------------------------------------------------------|:------------------|
318
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
319
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
320
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
321
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
322
+ ```json
323
+ {
324
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
325
+ }
326
+ ```
327
+
328
+ ### Training Hyperparameters
329
+ #### Non-Default Hyperparameters
330
+
331
+ - `eval_strategy`: steps
332
+ - `per_device_train_batch_size`: 16
333
+ - `per_device_eval_batch_size`: 16
334
+ - `num_train_epochs`: 4
335
+ - `warmup_ratio`: 0.1
336
+ - `fp16`: True
337
+
338
+ #### All Hyperparameters
339
+ <details><summary>Click to expand</summary>
340
+
341
+ - `overwrite_output_dir`: False
342
+ - `do_predict`: False
343
+ - `eval_strategy`: steps
344
+ - `prediction_loss_only`: True
345
+ - `per_device_train_batch_size`: 16
346
+ - `per_device_eval_batch_size`: 16
347
+ - `per_gpu_train_batch_size`: None
348
+ - `per_gpu_eval_batch_size`: None
349
+ - `gradient_accumulation_steps`: 1
350
+ - `eval_accumulation_steps`: None
351
+ - `learning_rate`: 5e-05
352
+ - `weight_decay`: 0.0
353
+ - `adam_beta1`: 0.9
354
+ - `adam_beta2`: 0.999
355
+ - `adam_epsilon`: 1e-08
356
+ - `max_grad_norm`: 1.0
357
+ - `num_train_epochs`: 4
358
+ - `max_steps`: -1
359
+ - `lr_scheduler_type`: linear
360
+ - `lr_scheduler_kwargs`: {}
361
+ - `warmup_ratio`: 0.1
362
+ - `warmup_steps`: 0
363
+ - `log_level`: passive
364
+ - `log_level_replica`: warning
365
+ - `log_on_each_node`: True
366
+ - `logging_nan_inf_filter`: True
367
+ - `save_safetensors`: True
368
+ - `save_on_each_node`: False
369
+ - `save_only_model`: False
370
+ - `restore_callback_states_from_checkpoint`: False
371
+ - `no_cuda`: False
372
+ - `use_cpu`: False
373
+ - `use_mps_device`: False
374
+ - `seed`: 42
375
+ - `data_seed`: None
376
+ - `jit_mode_eval`: False
377
+ - `use_ipex`: False
378
+ - `bf16`: False
379
+ - `fp16`: True
380
+ - `fp16_opt_level`: O1
381
+ - `half_precision_backend`: auto
382
+ - `bf16_full_eval`: False
383
+ - `fp16_full_eval`: False
384
+ - `tf32`: None
385
+ - `local_rank`: 0
386
+ - `ddp_backend`: None
387
+ - `tpu_num_cores`: None
388
+ - `tpu_metrics_debug`: False
389
+ - `debug`: []
390
+ - `dataloader_drop_last`: False
391
+ - `dataloader_num_workers`: 0
392
+ - `dataloader_prefetch_factor`: None
393
+ - `past_index`: -1
394
+ - `disable_tqdm`: False
395
+ - `remove_unused_columns`: True
396
+ - `label_names`: None
397
+ - `load_best_model_at_end`: False
398
+ - `ignore_data_skip`: False
399
+ - `fsdp`: []
400
+ - `fsdp_min_num_params`: 0
401
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
402
+ - `fsdp_transformer_layer_cls_to_wrap`: None
403
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
404
+ - `deepspeed`: None
405
+ - `label_smoothing_factor`: 0.0
406
+ - `optim`: adamw_torch
407
+ - `optim_args`: None
408
+ - `adafactor`: False
409
+ - `group_by_length`: False
410
+ - `length_column_name`: length
411
+ - `ddp_find_unused_parameters`: None
412
+ - `ddp_bucket_cap_mb`: None
413
+ - `ddp_broadcast_buffers`: False
414
+ - `dataloader_pin_memory`: True
415
+ - `dataloader_persistent_workers`: False
416
+ - `skip_memory_metrics`: True
417
+ - `use_legacy_prediction_loop`: False
418
+ - `push_to_hub`: False
419
+ - `resume_from_checkpoint`: None
420
+ - `hub_model_id`: None
421
+ - `hub_strategy`: every_save
422
+ - `hub_private_repo`: False
423
+ - `hub_always_push`: False
424
+ - `gradient_checkpointing`: False
425
+ - `gradient_checkpointing_kwargs`: None
426
+ - `include_inputs_for_metrics`: False
427
+ - `eval_do_concat_batches`: True
428
+ - `fp16_backend`: auto
429
+ - `push_to_hub_model_id`: None
430
+ - `push_to_hub_organization`: None
431
+ - `mp_parameters`:
432
+ - `auto_find_batch_size`: False
433
+ - `full_determinism`: False
434
+ - `torchdynamo`: None
435
+ - `ray_scope`: last
436
+ - `ddp_timeout`: 1800
437
+ - `torch_compile`: False
438
+ - `torch_compile_backend`: None
439
+ - `torch_compile_mode`: None
440
+ - `dispatch_batches`: None
441
+ - `split_batches`: None
442
+ - `include_tokens_per_second`: False
443
+ - `include_num_input_tokens_seen`: False
444
+ - `neftune_noise_alpha`: None
445
+ - `optim_target_modules`: None
446
+ - `batch_eval_metrics`: False
447
+ - `eval_on_start`: False
448
+ - `batch_sampler`: batch_sampler
449
+ - `multi_dataset_batch_sampler`: proportional
450
+
451
+ </details>
452
+
453
+ ### Training Logs
454
+ | Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
455
+ |:------:|:----:|:-------------:|:------:|:-----------------------:|:------------------------:|
456
+ | 0.2778 | 100 | 0.0258 | 0.0231 | 0.8859 | - |
457
+ | 0.5556 | 200 | 0.0229 | 0.0214 | 0.8916 | - |
458
+ | 0.8333 | 300 | 0.0222 | 0.0203 | 0.8924 | - |
459
+ | 1.1111 | 400 | 0.0178 | 0.0213 | 0.8927 | - |
460
+ | 1.3889 | 500 | 0.0135 | 0.0211 | 0.8924 | - |
461
+ | 1.6667 | 600 | 0.0123 | 0.0215 | 0.8921 | - |
462
+ | 1.9444 | 700 | 0.0128 | 0.0208 | 0.8910 | - |
463
+ | 2.2222 | 800 | 0.009 | 0.0207 | 0.8941 | - |
464
+ | 2.5 | 900 | 0.008 | 0.0208 | 0.8943 | - |
465
+ | 2.7778 | 1000 | 0.0075 | 0.0209 | 0.8943 | - |
466
+ | 3.0556 | 1100 | 0.0081 | 0.0215 | 0.8934 | - |
467
+ | 3.3333 | 1200 | 0.0063 | 0.0211 | 0.8932 | - |
468
+ | 3.6111 | 1300 | 0.0061 | 0.0213 | 0.8933 | - |
469
+ | 3.8889 | 1400 | 0.0059 | 0.0213 | 0.8933 | - |
470
+ | 4.0 | 1440 | - | - | - | 0.8581 |
471
+
472
+
473
+ ### Framework Versions
474
+ - Python: 3.10.12
475
+ - Sentence Transformers: 3.0.1
476
+ - Transformers: 4.42.4
477
+ - PyTorch: 2.3.0+cu121
478
+ - Accelerate: 0.32.1
479
+ - Datasets: 2.20.0
480
+ - Tokenizers: 0.19.1
481
+
482
+ ## Citation
483
+
484
+ ### BibTeX
485
+
486
+ #### Sentence Transformers
487
+ ```bibtex
488
+ @inproceedings{reimers-2019-sentence-bert,
489
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
490
+ author = "Reimers, Nils and Gurevych, Iryna",
491
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
492
+ month = "11",
493
+ year = "2019",
494
+ publisher = "Association for Computational Linguistics",
495
+ url = "https://arxiv.org/abs/1908.10084",
496
+ }
497
+ ```
498
+
499
+ <!--
500
+ ## Glossary
501
+
502
+ *Clearly define terms in order to be accessible across audiences.*
503
+ -->
504
+
505
+ <!--
506
+ ## Model Card Authors
507
+
508
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
509
+ -->
510
+
511
+ <!--
512
+ ## Model Card Contact
513
+
514
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
515
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.42.4",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:592e235065a4a7c3f5743440103c002673594e0fb0f9ee947f87f0b498d16ebe
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff