Update README.md
Browse files
README.md
CHANGED
|
@@ -12,9 +12,7 @@ SimPO (Simple Preference Optimization) is an offline preference optimization alg
|
|
| 12 |
|
| 13 |
### Model Description
|
| 14 |
|
| 15 |
-
We fine-tuned [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) on with the SimPO objective.
|
| 16 |
-
, a preference optimization dataset where the prompts are from [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)
|
| 17 |
-
|
| 18 |
|
| 19 |
- **Developed by:** Yu Meng, Mengzhou Xia, Danqi Chen
|
| 20 |
- **Model type:** Causal Language Model
|
|
@@ -34,8 +32,6 @@ We fine-tuned [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it
|
|
| 34 |
```
|
| 35 |
import torch
|
| 36 |
from transformers import pipeline
|
| 37 |
-
import json
|
| 38 |
-
import warnings
|
| 39 |
|
| 40 |
model_id = "princeton-nlp/gemma-2-9b-it-SimPO"
|
| 41 |
|
|
@@ -45,7 +41,6 @@ generator = pipeline(
|
|
| 45 |
model_kwargs={"torch_dtype": torch.bfloat16},
|
| 46 |
device="cuda",
|
| 47 |
)
|
| 48 |
-
generator.tokenizer.chat_template = template
|
| 49 |
outputs = generator([{"role": "user", "content": "What's the difference between llamas and alpacas?"}], do_sample=False, max_new_tokens=200)
|
| 50 |
print(outputs[0]['generated_text'])
|
| 51 |
```
|
|
@@ -62,7 +57,7 @@ We use
|
|
| 62 |
|
| 63 |
#### Speeds, Sizes, Times
|
| 64 |
|
| 65 |
-
Fine-tuning the [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) on
|
| 66 |
|
| 67 |
## Evaluation
|
| 68 |
|
|
|
|
| 12 |
|
| 13 |
### Model Description
|
| 14 |
|
| 15 |
+
We fine-tuned [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) on [princeton-nlp/gemma2-ultrafeedback-armorm](https://huggingface.co/datasets/princeton-nlp/gemma2-ultrafeedback-armorm) with the SimPO objective.
|
|
|
|
|
|
|
| 16 |
|
| 17 |
- **Developed by:** Yu Meng, Mengzhou Xia, Danqi Chen
|
| 18 |
- **Model type:** Causal Language Model
|
|
|
|
| 32 |
```
|
| 33 |
import torch
|
| 34 |
from transformers import pipeline
|
|
|
|
|
|
|
| 35 |
|
| 36 |
model_id = "princeton-nlp/gemma-2-9b-it-SimPO"
|
| 37 |
|
|
|
|
| 41 |
model_kwargs={"torch_dtype": torch.bfloat16},
|
| 42 |
device="cuda",
|
| 43 |
)
|
|
|
|
| 44 |
outputs = generator([{"role": "user", "content": "What's the difference between llamas and alpacas?"}], do_sample=False, max_new_tokens=200)
|
| 45 |
print(outputs[0]['generated_text'])
|
| 46 |
```
|
|
|
|
| 57 |
|
| 58 |
#### Speeds, Sizes, Times
|
| 59 |
|
| 60 |
+
Fine-tuning the [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) on [princeton-nlp/gemma2-ultrafeedback-armorm](https://huggingface.co/datasets/princeton-nlp/gemma2-ultrafeedback-armorm) takes around 100 mins to finish on 8xH100 GPUs.
|
| 61 |
|
| 62 |
## Evaluation
|
| 63 |
|