File size: 3,950 Bytes
59a94c1
 
 
 
08d9b6a
 
761974b
08d9b6a
 
 
 
 
 
 
 
 
 
 
2f06609
 
08d9b6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
761974b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
license: apache-2.0
datasets:
- Gen-Verse/ReasonFlux-V2-Reasoner-DPO
language:
- en
- zh
base_model:
- Qwen/Qwen3-1.7B
pipeline_tag: text-generation
library_name: transformers
tags:
- text-generation-inference
- code
- trl
- DPO
---

![1.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/JdFSTIRr6eR0sp9hJ7xAV.png)

# **ReasonFlux-Qwen3-dpo**

> **ReasonFlux-Qwen3-dpo** is a fine-tuned version of **Qwen3-1.7B**, trained on the [**Gen-Verse/ReasonFlux-V2-Reasoner-DPO**](https://huggingface.co/datasets/Gen-Verse/ReasonFlux-V2-Reasoner-DPO) dataset.
> It adopts a **template-augmented reasoning paradigm**, internalizing structured **thought templates** through **iterative hierarchical reinforcement learning** and **direct preference optimization (DPO)**.
> This design enables the model to reason more transparently, consistently, and adaptively across multi-domain scientific and mathematical tasks.

> \[!note]
> GGUF: [https://huggingface.co/prithivMLmods/ReasonFlux-Qwen3-dpo-GGUF](https://huggingface.co/prithivMLmods/ReasonFlux-Qwen3-dpo-GGUF)

---

## **Key Features**

1. **Template-Augmented Reasoning**
   Incorporates structured **reasoning templates** that guide step-by-step thinking, improving coherence and reducing hallucinations.

2. **DPO Fine-Tuning with Hierarchical Reinforcement**
   Leverages **direct preference optimization** along with **iterative reinforcement learning**, internalizing high-quality reasoning behaviors.

3. **Scientific & Mathematical Expertise**
   Excels at symbolic derivations, step-by-step proofs, and multi-domain STEM reasoning (physics, chemistry, biology, mathematics).

4. **Code Understanding & Generation**
   Provides detailed coding explanations, debugging support, and optimization hints across multiple programming languages.

5. **Structured Output Mastery**
   Fluent in producing outputs across **LaTeX**, **Markdown**, **JSON**, **CSV**, and **YAML** for seamless integration in research and technical workflows.

6. **Efficient Deployment**
   Lightweight yet powerful, designed for **mid-range GPUs**, **research clusters**, and **edge AI environments**.

---

## **Quickstart with Transformers**

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "prithivMLmods/ReasonFlux-Qwen3-dpo"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Explain how reinforcement learning differs from supervised learning with real-world examples."

messages = [
    {"role": "system", "content": "You are a reasoning tutor skilled in science, math, and coding."},
    {"role": "user", "content": prompt}
]

text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```

---

## **Intended Use**

* Advanced reasoning tutor for mathematics, coding, and scientific research
* Research assistant capable of structured problem-solving with template-guided reasoning
* Technical documentation and structured data generation
* STEM-focused chatbot or API for research and education workflows
* Deployment in environments requiring transparent reasoning with efficient compute use

## **Limitations**

* Not optimized for casual or creative writing
* Context limitations may restrict multi-document or full codebase comprehension
* Specializes in structured reasoning—general chit-chat may underperform
* Optimized for **clarity of reasoning** rather than **natural conversational tone**