prithivMLmods commited on
Commit
c8bfed8
·
verified ·
1 Parent(s): e1a7f43

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -1
README.md CHANGED
@@ -66,7 +66,7 @@ pipe = pipeline(
66
  device_map="auto",
67
  )
68
  messages = [
69
- {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
70
  {"role": "user", "content": "Who are you?"},
71
  ]
72
  outputs = pipe(
@@ -75,6 +75,46 @@ outputs = pipe(
75
  )
76
  print(outputs[0]["generated_text"][-1])
77
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  # **Use Cases**
79
 
80
  - Multilingual content generation
 
66
  device_map="auto",
67
  )
68
  messages = [
69
+ {"role": "system", "content": "You are the kind and tri-intelligent assistant helping people to understand complex concepts."},
70
  {"role": "user", "content": "Who are you?"},
71
  ]
72
  outputs = pipe(
 
75
  )
76
  print(outputs[0]["generated_text"][-1])
77
  ```
78
+ # **Demo Inference LlamaForCausalLM**
79
+ ```python
80
+ import torch
81
+ from transformers import AutoTokenizer, LlamaForCausalLM
82
+
83
+ # Load tokenizer and model
84
+ tokenizer = AutoTokenizer.from_pretrained('prithivMLmods/Triangulum-10B', trust_remote_code=True)
85
+ model = LlamaForCausalLM.from_pretrained(
86
+ "prithivMLmods/Triangulum-10B",
87
+ torch_dtype=torch.float16,
88
+ device_map="auto",
89
+ load_in_8bit=False,
90
+ load_in_4bit=True,
91
+ use_flash_attention_2=True
92
+ )
93
+
94
+ # Define a list of system and user prompts
95
+ prompts = [
96
+ """<|im_start|>system
97
+ You are the kind and tri-intelligent assistant helping people to understand complex concepts.<|im_end|>
98
+ <|im_start|>user
99
+ Can you explain the concept of eigenvalues and eigenvectors in a simple way?<|im_end|>
100
+ <|im_start|>assistant"""
101
+ ]
102
+
103
+ # Generate responses for each prompt
104
+ for chat in prompts:
105
+ print(f"Prompt:\n{chat}\n")
106
+ input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda")
107
+ generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
108
+ response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
109
+ print(f"Response:\n{response}\n{'-'*80}\n")
110
+ ```
111
+
112
+ ### Key Adjustments:
113
+ 1. **System Prompts:** Each prompt defines a different role or persona for the AI to adopt.
114
+ 2. **User Prompts:** These specify the context or task for the assistant, ranging from teaching to storytelling or career advice.
115
+ 3. **Looping Through Prompts:** Each prompt is processed in a loop to showcase the model's versatility.
116
+
117
+ You can expand the list of prompts to explore a variety of scenarios and responses.
118
  # **Use Cases**
119
 
120
  - Multilingual content generation