File size: 8,771 Bytes
ed8c5c9
87ed7e8
 
 
 
e555d41
 
f8df299
e555d41
 
87ed7e8
 
f8df299
87ed7e8
f8df299
c68ab1e
f8df299
 
 
 
 
87ed7e8
 
 
e555d41
87ed7e8
 
cfdd5ba
87ed7e8
 
 
cfdd5ba
87ed7e8
 
 
cfdd5ba
99eec11
87ed7e8
 
da9b9a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed8c5c9
f8df299
c68ab1e
f8df299
4574f98
 
 
 
 
c3da3eb
4574f98
 
 
 
 
 
 
 
45201c6
4574f98
45201c6
4574f98
 
 
 
 
ffb8213
87ed7e8
0f53b7c
45201c6
 
87ed7e8
4752847
6fca1bc
cd6011a
4574f98
cd6011a
45201c6
0f53b7c
cd6011a
 
 
 
 
 
 
eab4076
cd6011a
eab4076
cd6011a
eab4076
 
 
cd6011a
eab4076
cd6011a
 
 
 
 
eab4076
cd6011a
 
 
 
 
 
eab4076
cd6011a
 
4574f98
45201c6
 
 
cd6011a
 
ffb8213
87ed7e8
0f53b7c
c6991a0
0f53b7c
87ed7e8
ffb8213
 
 
 
0f53b7c
00d3d0b
32ede28
00d3d0b
 
 
 
 
 
 
 
 
e004ab0
 
00d3d0b
 
 
 
5110c34
00d3d0b
d30688b
0f53b7c
 
 
 
f8df299
15de9a2
3826b49
5110c34
f8df299
d917d6b
 
4257f04
 
45201c6
f8df299
da9b9a7
f8df299
 
 
 
 
45201c6
0f53b7c
f8df299
0f53b7c
45201c6
d30688b
 
45201c6
f8df299
 
 
00d3d0b
f8df299
 
 
15de9a2
f8df299
5110c34
 
 
 
 
45201c6
5110c34
45201c6
 
5110c34
 
15de9a2
5110c34
45201c6
5110c34
 
 
bee816e
45201c6
d30688b
ea92527
 
 
 
 
 
4257f04
c6991a0
4257f04
ea92527
4257f04
c6991a0
 
ea92527
c6991a0
 
ea92527
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
---
language:
- en
- es
- ca
licence:
- apache-2.0
tags:
- aguila
- falcon
- spanish
- catalan
metrics:
- ppl
model-index:
- name: aguila_7b
  results:
  - task:
      name: Causal Language Modeling
      type: text-generation
    metrics:
    - name: Perplexity
      type: ppl
      value: 8.59
pipeline_tag: text-generation
widget:
- text: |-
    Respon a la pregunta següent.
    Pregunta: "Quina és la capital de Suècia?"
    Resposta: "La capital de Suècia és Estocolm."
    ----
    Respon a la pregunta següent.
    Pregunta: "Quina beguda es consumeix als matins per despertar-se?"
    Resposta: "La majoria de gent consumeix cafè per despertar-se."
    ----
    Respon a la pregunta següent.
    Pregunta: "Explica com funciona un motor de combustió"
    Resposta:
  example_title: Pregunta-Resposta
- text: |-
    Extrae las entidades nombradas del siguiente texto:
    Texto: "Me llamo Wolfgang y vivo en Berlin"
    Entidades: Wolfgang:PER, Berlin:LOC
    ----
    Extrae las entidades nombradas del siguiente texto:
    Texto: "Hoy voy a visitar el parc güell tras salir del barcelona supercomputing center"
    Entidades: parc güell:LOC, barcelona supercomputing center:LOC
    ----
    Extrae las entidades nombradas del siguiente texto:
    Texto: "Maria y Miguel no tienen ningún problema contigo"
    Entidades: Maria:PER, Miguel:PER
    ----
    Extrae las entidades nombradas del siguiente texto:
    Texto: "Damián se cortó el pelo"
    Entidades: Damián:PER
    ----
    Extrae las entidades nombradas del siguiente texto:
    Texto: "Lo mejor de Barcelona és el bar de mi amigo Pablo"
    Entidades: Pablo:PER, Barcelona:LOC
    ----
    Extrae las entidades nombradas del siguiente texto:
    Texto: "Carlos comparte piso con Marc"
    Entidades:
  example_title: Entidades-Nombradas
---

# Ǎguila-7B

## Table of Contents
<details>
<summary>Click to expand</summary>

- [Model description](#model-description)
- [Intended uses and limitations](#intended-uses-and-limitations)
- [How to use](#how-to-use)
- [Limitations and bias](#limitations-and-bias)
- [Language adaptation](#language-adaptation)
- [Training](#training)
  - [Training data](#training-data)
  - [Training procedure](#training-procedure)
- [Additional information](#additional-information)
  - [Author](#author)
  - [Contact](#contact)
  - [Copyright](#copyright)
  - [License](#license)
  - [Funding](#funding)
  - [Disclaimer](#disclaimer)

</details>

## Model description

**Ǎguila-7B** is a transformer-based causal language model for Catalan, Spanish, and English. 
It is based on the [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) model and has been trained on a 26B token 
trilingual corpus collected from publicly available corpora and crawlers.

More information available in the following post from Medium.com: Introducing Ǎguila, a new open-source LLM for Spanish and Catalan (https://medium.com/@mpamies247/introducing-a%CC%8Cguila-a-new-open-source-llm-for-spanish-and-catalan-ee1ebc70bc79)


## Intended uses and limitations

The **Ǎguila-7B** model is ready-to-use only for causal language modeling to perform text-generation tasks. 
However, it is intended to be fine-tuned for downstream tasks.

## How to use

Here is how to use this model:

```python
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM

input_text = "El mercat del barri és fantàstic, hi pots trobar"

model_id  = "projecte-aina/aguila-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
generator = pipeline(
    "text-generation",
    model=model_id,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto",
)
generation = generator(
    input_text,
    do_sample=True,
    top_k=10,
    eos_token_id=tokenizer.eos_token_id,
)

print(f"Result: {generation[0]['generated_text']}")
```

## Limitations and bias
At the time of submission, no measures have been taken to estimate the bias and toxicity embedded in the model. 
However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques 
on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. 


## Language adaptation

We adapted the original [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) model to Spanish and Catalan by swapping the tokenizer and adjusting the embedding layer. 

The adaptation procedure is explained in [this blog post](https://medium.com/@mpamies247/ee1ebc70bc79).

## Training

### Training data

The training corpus consists of 26B tokens of several corpora gathered from web crawlings and public domain data.

| Dataset             | Language | Words (per-epoch) | Epochs       |
|---------------------|----------|--------------------|--------------|
| Wikipedia           | en       |           2169.97M |  1.428144485 |
| C4_es               | es       |          53709.80M | 0.1049686196 |
| Biomedical          | es       |            455.03M | 0.7140722425 |
| Legal               | es       |            995.70M | 0.7140722425 |
| Wikipedia           | es       |            693.60M |  1.428144485 |
| Gutenberg           | es       |             53.18M | 0.7140722425 |
| C4_ca               | ca       |           2826.00M |  2.142216727 |
| Biomedical          | ca       |             11.80M |  1.428144485 |
| RacoCatalà Noticias | ca       |             17.16M |  2.142216727 |
| RacoCatalà Forums   | ca       |            333.73M |  2.142216727 |
| CaWaC               | ca       |             57.79M |  2.142216727 |
| Wikipedia           | ca       |            228.01M |  3.570361212 |
| Vilaweb             | ca       |             50.34M |  2.142216727 |

The dataset has the following language distribution:

|Language|Percentage|
|--------|----------|
|   En   |  16.84%  |
|   Es   |  41.38%  |
|   Ca   |  41.79%  |

Note: A small amount of English data was kept to avoid catastrophic forgetting. 

## Training procedure

The training corpus has been tokenized using a byte version of [Byte-Pair Encoding (BPE)](https://github.com/openai/gpt-2) with a vocabulary size of 50,257 tokens. 
After training a new tokenizer and adapting [falcon-7b](https://huggingface.co/tiiuae/falcon-7b)'s embedding layer, the model was
further pre-trained in three target languages: Catalan, Spanish and English.

The training lasted a total of 320 hours on 8 NVIDIA H100 GPUs with 80GB RAM.


### Training hyperparameters

- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- train_batch_size: 1
- eval_batch_size:  1
- total_train_batch_size: 8
- total_eval_batch_size:  8
- optimizer: Adam
- betas: (0.9,0.999)
- epsilon: 1e-08
- learning_rate: 5e-05
- lr_scheduler_type: linear
- num_epochs: 1.0


### Framework versions

- Pytorch 2.0.0
- Transformers 4.30.2
- Datasets 2.13.1
- Tokenizers 0.13.3

## Additional information

### Author
The Language Technologies Unit from Barcelona Supercomputing Center.

### Contact
For further information, please send an email to <langtech@bsc.es>.

### Copyright
Copyright(c) 2023 by Language Technologies Unit, Barcelona Supercomputing Center.

### License
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)

### Funding
This work was funded by:
  - The [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
  - The [Spanish State Secretariat for Digitalization and Artificial Intelligence](https://portal.mineco.gob.es/en-us/digitalizacionIA/Pages/sedia.aspx) within the framework of the [Plan de Impulso de las Tecnologías del Lenguaje](https://plantl.mineco.gob.es/Paginas/index.aspx).

### Disclaimer

<details>
<summary>Click to expand</summary>

The model published in this repository is intended for a generalist purpose and is available to third parties under a permissive Apache License, Version 2.0. 

Be aware that the model may have biases and/or any other undesirable distortions.

When third parties deploy or provide systems and/or services to other parties using this model (or any system based on it) 
or become users of the model, they should note that it is their responsibility to mitigate the risks arising from its use and, 
in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence.

In no event shall the owner and creator of the model (Barcelona Supercomputing Center) 
be liable for any results arising from the use made by third parties.

</details>