---
license: mit
datasets:
- projecte-aina/festcat_trimmed_denoised
- projecte-aina/openslr-slr69-ca-trimmed-denoised
---
# Vocos-mel-22khz-cat
## Model Details
### Model Description
**Vocos** is a fast neural vocoder designed to synthesize audio waveforms from acoustic features.
Unlike other typical GAN-based vocoders, Vocos does not model audio samples in the time domain.
Instead, it generates spectral coefficients, facilitating rapid audio reconstruction through
inverse Fourier transform.
This version of **Vocos** uses 80-bin mel spectrograms as acoustic features which are widespread
in the TTS domain since the introduction of [hifi-gan](https://github.com/jik876/hifi-gan/blob/master/meldataset.py)
The goal of this model is to provide an alternative to hifi-gan that is faster and compatible with the
acoustic output of several TTS models. This version is tailored for the Catalan language,
as it was trained only on Catalan speech datasets.
We are grateful with the authors for open sourcing the code allowing us to modify and train this version.
## Intended Uses and limitations
The model is aimed to serve as a vocoder to synthesize audio waveforms from mel spectrograms. Is trained to generate speech and if is used in other audio
domain is possible that the model won't produce high quality samples.
## How to Get Started with the Model
Use the code below to get started with the model.
### Installation
To use Vocos only in inference mode, install it using:
```bash
pip install git+https://github.com/langtech-bsc/vocos.git@matcha
```
### Reconstruct audio from mel-spectrogram
```python
import torch
from vocos import Vocos
vocos = Vocos.from_pretrained("BSC-LT/vocos-mel-22khz-cat")
mel = torch.randn(1, 80, 256) # B, C, T
audio = vocos.decode(mel)
```
### Copy-synthesis from a file:
```python
import torchaudio
y, sr = torchaudio.load(YOUR_AUDIO_FILE)
if y.size(0) > 1: # mix to mono
y = y.mean(dim=0, keepdim=True)
y = torchaudio.functional.resample(y, orig_freq=sr, new_freq=22050)
y_hat = vocos(y)
```
### Onnx
We also release a onnx version of the model, you can check in colab:
## Training Details
### Training Data
The model was trained on 3 Catalan speech datasets
| Dataset | Language | Hours |
|---------------------|----------|---------|
| Festcat | ca | 22 |
| OpenSLR69 | ca | 5 |
| lafresca | ca | 3.5 |
### Training Procedure
The model was trained for 1.5M steps and 1.3k epochs with a batch size of 16 for stability. We used a Cosine scheduler with a initial learning rate of 5e-4.
We also modified the mel spectrogram loss to use 128 bins and fmax of 11025 instead of the same input mel spectrogram.
#### Training Hyperparameters
* initial_learning_rate: 5e-4
* scheduler: cosine without warmup or restarts
* mel_loss_coeff: 45
* mrd_loss_coeff: 0.1
* batch_size: 16
* num_samples: 16384
## Evaluation
Evaluation was done using the metrics on the [original repo](https://github.com/gemelo-ai/vocos), after ~ 1000 epochs we achieve:
* val_loss: 3.57
* f1_score: 0.95
* mel_loss: 0.22
* periodicity_loss: 0.113
* pesq_score: 3.31
* pitch_loss: 31.61
* utmos_score: 3.33
## Citation
If this code contributes to your research, please cite the work:
```
@article{siuzdak2023vocos,
title={Vocos: Closing the gap between time-domain and Fourier-based neural vocoders for high-quality audio synthesis},
author={Siuzdak, Hubert},
journal={arXiv preprint arXiv:2306.00814},
year={2023}
}
```
## Additional information
### Author
The Language Technologies Unit from Barcelona Supercomputing Center.
### Contact
For further information, please send an email to .
### Copyright
Copyright(c) 2024 by Language Technologies Unit, Barcelona Supercomputing Center.
### License
[MIT](https://opensource.org/license/mit)
### Funding
This work has been promoted and financed by the Generalitat de Catalunya through the [Aina project](https://projecteaina.cat/).