mmarimon commited on
Commit
07d0679
·
1 Parent(s): 99d74b1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -27
README.md CHANGED
@@ -51,32 +51,40 @@ widget:
51
 
52
  # Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Named Entity Recognition.
53
 
54
- ## Table of Contents
55
- - [Model Description](#model-description)
56
- - [Intended Uses and Limitations](#intended-uses-and-limitations)
57
- - [How to Use](#how-to-use)
 
 
 
 
58
  - [Training](#training)
59
- - [Training Data](#training-data)
60
- - [Training Procedure](#training-procedure)
61
  - [Evaluation](#evaluation)
62
- - [Variable and Metrics](#variable-and-metrics)
63
- - [Evaluation Results](#evaluation-results)
64
- - [Licensing Information](#licensing-information)
65
- - [Citation Information](#citation-information)
66
- - [Funding](#funding)
67
- - [Contributions](#contributions)
68
- - [Disclaimer](#disclaimer)
 
 
 
 
69
 
70
 
71
  ## Model description
72
 
73
  The **roberta-base-ca-v2-cased-ner** is a Named Entity Recognition (NER) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details).
74
 
75
- ## Intended Uses and Limitations
76
 
77
  **roberta-base-ca-v2-cased-ner** model can be used to recognize Named Entities in the provided text. The model is limited by its training dataset and may not generalize well for all use cases.
78
 
79
- ## How to Use
80
 
81
  Here is how to use this model:
82
 
@@ -91,17 +99,20 @@ ner_results = nlp(example)
91
  pprint(ner_results)
92
  ```
93
 
 
 
 
94
  ## Training
95
 
96
  ### Training data
97
  We used the NER dataset in Catalan called [AnCora-Ca-NER](https://huggingface.co/datasets/projecte-aina/ancora-ca-ner) for training and evaluation.
98
 
99
- ### Training Procedure
100
  The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
101
 
102
  ## Evaluation
103
 
104
- ### Variable and Metrics
105
 
106
  This model was finetuned maximizing F1 score.
107
 
@@ -117,11 +128,25 @@ We evaluated the _roberta-base-ca-v2-cased-ner_ on the AnCora-Ca-NER test set ag
117
 
118
  For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
119
 
120
- ## Licensing Information
121
 
 
 
 
 
 
 
 
 
 
 
 
 
122
  [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
123
 
124
- ## Citation Information
 
 
 
125
 
126
  If you use any of these resources (datasets or models) in your work, please cite our latest paper:
127
  ```bibtex
@@ -146,14 +171,7 @@ If you use any of these resources (datasets or models) in your work, please cite
146
  }
147
  ```
148
 
149
- ## Funding
150
- This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
151
-
152
- ## Contributions
153
-
154
- [N/A]
155
-
156
- ## Disclaimer
157
 
158
  <details>
159
  <summary>Click to expand</summary>
 
51
 
52
  # Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Named Entity Recognition.
53
 
54
+ ## Table of ContentsContents
55
+ <details>
56
+ <summary>Click to expand</summary>
57
+
58
+ - [Model description](#model-description)
59
+ - [Intended uses and limitations](#intended-use)
60
+ - [How to use](#how-to-use)
61
+ - [Limitations and bias](#limitations-and-bias)
62
  - [Training](#training)
63
+ - [Training data](#training-data)
64
+ - [Training procedure](#training-procedure)
65
  - [Evaluation](#evaluation)
66
+ - [Variable and metrics](#variable-and-metrics)
67
+ - [Evaluation results](#evaluation-results)
68
+ - [Additional information](#additional-information)
69
+ - [Author](#author)
70
+ - [Contact information](#contact-information)
71
+ - [Copyright](#copyright)
72
+ - [Licensing information](#licensing-information)
73
+ - [Funding](#funding)
74
+ - [Citing information](#citing-information)
75
+ - [Disclaimer](#disclaimer)
76
+ </details>
77
 
78
 
79
  ## Model description
80
 
81
  The **roberta-base-ca-v2-cased-ner** is a Named Entity Recognition (NER) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details).
82
 
83
+ ## Intended uses and limitations
84
 
85
  **roberta-base-ca-v2-cased-ner** model can be used to recognize Named Entities in the provided text. The model is limited by its training dataset and may not generalize well for all use cases.
86
 
87
+ ## How to use
88
 
89
  Here is how to use this model:
90
 
 
99
  pprint(ner_results)
100
  ```
101
 
102
+ ## Limitations and bias
103
+ At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
104
+
105
  ## Training
106
 
107
  ### Training data
108
  We used the NER dataset in Catalan called [AnCora-Ca-NER](https://huggingface.co/datasets/projecte-aina/ancora-ca-ner) for training and evaluation.
109
 
110
+ ### Training procedure
111
  The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
112
 
113
  ## Evaluation
114
 
115
+ ### Variable and metrics
116
 
117
  This model was finetuned maximizing F1 score.
118
 
 
128
 
129
  For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
130
 
 
131
 
132
+ ## Additional information
133
+
134
+ ### Author
135
+ Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es)
136
+
137
+ ### Contact information
138
+ For further information, send an email to aina@bsc.es
139
+
140
+ ### Copyright
141
+ Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center
142
+
143
+ ### Licensing information
144
  [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
145
 
146
+ ### Funding
147
+ This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
148
+
149
+ ### Citation Information
150
 
151
  If you use any of these resources (datasets or models) in your work, please cite our latest paper:
152
  ```bibtex
 
171
  }
172
  ```
173
 
174
+ ### Disclaimer
 
 
 
 
 
 
 
175
 
176
  <details>
177
  <summary>Click to expand</summary>