Question Answering
Transformers
PyTorch
Catalan
roberta
catalan
qa
Eval Results
Inference Endpoints
mmarimon commited on
Commit
c52b0f6
1 Parent(s): 7c4d7c2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -27
README.md CHANGED
@@ -68,31 +68,37 @@ widget:
68
  # Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Question Answering.
69
 
70
  ## Table of Contents
71
- - [Model Description](#model-description)
72
- - [Intended Uses and Limitations](#intended-uses-and-limitations)
73
- - [How to Use](#how-to-use)
 
 
 
 
 
74
  - [Training](#training)
75
- - [Training Data](#training-data)
76
- - [Training Procedure](#training-procedure)
77
  - [Evaluation](#evaluation)
78
- - [Variable and Metrics](#variable-and-metrics)
79
- - [Evaluation Results](#evaluation-results)
80
- - [Licensing Information](#licensing-information)
81
- - [Citation Information](#citation-information)
82
- - [Funding](#funding)
83
- - [Contributions](#contributions)
84
- - [Disclaimer](#disclaimer)
 
 
 
 
85
 
86
  ## Model description
87
-
88
  The **roberta-base-ca-v2-cased-qa** is a Question Answering (QA) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details).
89
 
90
  ## Intended Uses and Limitations
91
-
92
  **roberta-base-ca-v2-cased-qa** model can be used for extractive question answering. The model is limited by its training dataset and may not generalize well for all use cases.
93
 
94
  ## How to Use
95
-
96
  Here is how to use this model:
97
 
98
  ```python
@@ -106,18 +112,20 @@ qa_results = nlp(text, context)
106
  print(qa_results)
107
  ```
108
 
 
 
 
109
  ## Training
110
 
111
  ### Training data
112
  We used the QA dataset in Catalan called [CatalanQA](https://huggingface.co/datasets/projecte-aina/catalanqa) for training and evaluation, and the [XQuAD-ca](https://huggingface.co/datasets/projecte-aina/xquad-ca) test set for evaluation.
113
 
114
- ### Training Procedure
115
  The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
116
 
117
  ## Evaluation
118
 
119
- ### Variable and Metrics
120
-
121
  This model was finetuned maximizing F1 score.
122
 
123
  ### Evaluation results
@@ -133,10 +141,23 @@ We evaluated the _roberta-base-ca-v2-cased-qa_ on the CatalanQA and XQuAD-ca tes
133
 
134
  For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
135
 
136
- ## Licensing Information
 
 
 
137
 
 
 
 
 
 
 
 
138
  [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
139
 
 
 
 
140
  ## Citation Information
141
  If you use any of these resources (datasets or models) in your work, please cite our latest paper:
142
  ```bibtex
@@ -160,14 +181,6 @@ If you use any of these resources (datasets or models) in your work, please cite
160
  pages = "4933--4946",
161
  }
162
  ```
163
-
164
- ## Funding
165
- This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
166
-
167
- ## Contributions
168
-
169
- [N/A]
170
-
171
  ## Disclaimer
172
 
173
  <details>
 
68
  # Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Question Answering.
69
 
70
  ## Table of Contents
71
+ <details>
72
+ <summary>Click to expand</summary>
73
+
74
+
75
+ - [Model description](#model-description)
76
+ - [Intended uses and limitations](#intended-use)
77
+ - [How to use](#how-to-use)
78
+ - [Limitations and bias](#limitations-and-bias)
79
  - [Training](#training)
80
+ - [Training data](#training-data)
81
+ - [Training procedure](#training-procedure)
82
  - [Evaluation](#evaluation)
83
+ - [Variable and metrics](#variable-and-metrics)
84
+ - [Evaluation results](#evaluation-results)
85
+ - [Additional information](#additional-information)
86
+ - [Author](#author)
87
+ - [Contact information](#contact-information)
88
+ - [Copyright](#copyright)
89
+ - [Licensing information](#licensing-information)
90
+ - [Funding](#funding)
91
+ - [Citing information](#citing-information)
92
+ - [Disclaimer](#disclaimer)
93
+ </details>
94
 
95
  ## Model description
 
96
  The **roberta-base-ca-v2-cased-qa** is a Question Answering (QA) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details).
97
 
98
  ## Intended Uses and Limitations
 
99
  **roberta-base-ca-v2-cased-qa** model can be used for extractive question answering. The model is limited by its training dataset and may not generalize well for all use cases.
100
 
101
  ## How to Use
 
102
  Here is how to use this model:
103
 
104
  ```python
 
112
  print(qa_results)
113
  ```
114
 
115
+ ## Limitations and bias
116
+ At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
117
+
118
  ## Training
119
 
120
  ### Training data
121
  We used the QA dataset in Catalan called [CatalanQA](https://huggingface.co/datasets/projecte-aina/catalanqa) for training and evaluation, and the [XQuAD-ca](https://huggingface.co/datasets/projecte-aina/xquad-ca) test set for evaluation.
122
 
123
+ ### Training procedure
124
  The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
125
 
126
  ## Evaluation
127
 
128
+ ### Variable and metrics
 
129
  This model was finetuned maximizing F1 score.
130
 
131
  ### Evaluation results
 
141
 
142
  For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
143
 
144
+ ## Additional information
145
+
146
+ ### Author
147
+ Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es)
148
 
149
+ ### Contact information
150
+ For further information, send an email to aina@bsc.es
151
+
152
+ ### Copyright
153
+ Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center
154
+
155
+ ### Licensing information
156
  [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
157
 
158
+ ### Funding
159
+ This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
160
+
161
  ## Citation Information
162
  If you use any of these resources (datasets or models) in your work, please cite our latest paper:
163
  ```bibtex
 
181
  pages = "4933--4946",
182
  }
183
  ```
 
 
 
 
 
 
 
 
184
  ## Disclaimer
185
 
186
  <details>