v2
Browse filesRoberta-base-ca-v2 trained with the new version of the TeCla dataset (v2).
- README.md +11 -11
- config.json +110 -40
- pytorch_model.bin +2 -2
- tokenizer.json +0 -0
- tokenizer_config.json +1 -1
README.md
CHANGED
@@ -34,7 +34,7 @@ model-index:
|
|
34 |
metrics:
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
|
39 |
widget:
|
40 |
|
@@ -107,7 +107,7 @@ At the time of submission, no measures have been taken to estimate the bias embe
|
|
107 |
## Training
|
108 |
|
109 |
### Training data
|
110 |
-
We used the TC dataset in Catalan called [TeCla](https://huggingface.co/datasets/projecte-aina/tecla) for training and evaluation.
|
111 |
|
112 |
### Training procedure
|
113 |
The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
|
@@ -116,17 +116,17 @@ The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5
|
|
116 |
|
117 |
### Variable and metrics
|
118 |
|
119 |
-
This model was finetuned maximizing
|
120 |
|
121 |
## Evaluation results
|
122 |
-
We evaluated the _roberta-base-ca-v2-cased-tc_ on the TeCla test set against standard multilingual and monolingual baselines
|
123 |
-
|
124 |
-
| Model | TeCla (Accuracy) |
|
125 |
-
|
|
126 |
-
| roberta-base-ca-v2
|
127 |
-
| roberta-
|
128 |
-
| mBERT |
|
129 |
-
| XLM-RoBERTa |
|
130 |
|
131 |
For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
|
132 |
|
|
|
34 |
metrics:
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.8034
|
38 |
|
39 |
widget:
|
40 |
|
|
|
107 |
## Training
|
108 |
|
109 |
### Training data
|
110 |
+
We used the TC dataset in Catalan called [TeCla](https://huggingface.co/datasets/projecte-aina/tecla) for training and evaluation. Although TeCla includes a coarse-grained ('label1') and a fine-grained categorization ('label2'), only the last one, with 53 classes, was used for the training.
|
111 |
|
112 |
### Training procedure
|
113 |
The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
|
|
|
116 |
|
117 |
### Variable and metrics
|
118 |
|
119 |
+
This model was finetuned maximizing F1 (weighted).
|
120 |
|
121 |
## Evaluation results
|
122 |
+
We evaluated the _roberta-base-ca-v2-cased-tc_ on the TeCla test set against standard multilingual and monolingual baselines. The results for 'label1' categories were obtained through a mapping from the fine-grained category ('label2') to the corresponding coarse-grained one ('label1').
|
123 |
+
|
124 |
+
| Model | TeCla - label1 (Accuracy) | TeCla - label2 (Accuracy) |
|
125 |
+
| ------------|:-------------|:-------------|
|
126 |
+
| roberta-base-ca-v2 | 96.31 | 80.34 |
|
127 |
+
| roberta-large-ca-v2 | **96.51** | **80.68** |
|
128 |
+
| mBERT | 95.72 | 78.47 |
|
129 |
+
| XLM-RoBERTa | 95.66 | 78.01 |
|
130 |
|
131 |
For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
|
132 |
|
config.json
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"RobertaForSequenceClassification"
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
"bos_token_id": 0,
|
|
|
8 |
"eos_token_id": 2,
|
9 |
"finetuning_task": "tecla",
|
10 |
"gradient_checkpointing": false,
|
@@ -12,48 +13,116 @@
|
|
12 |
"hidden_dropout_prob": 0.1,
|
13 |
"hidden_size": 768,
|
14 |
"id2label": {
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
},
|
35 |
"initializer_range": 0.02,
|
36 |
"intermediate_size": 3072,
|
37 |
"label2id": {
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
},
|
58 |
"layer_norm_eps": 1e-05,
|
59 |
"max_position_embeddings": 514,
|
@@ -63,7 +132,8 @@
|
|
63 |
"pad_token_id": 1,
|
64 |
"position_embedding_type": "absolute",
|
65 |
"problem_type": "single_label_classification",
|
66 |
-
"
|
|
|
67 |
"type_vocab_size": 1,
|
68 |
"use_cache": true,
|
69 |
"vocab_size": 50262
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "/gpfs/projects/bsc88/projects/catalan_evaluation/models/roberta-base-ca-v2",
|
3 |
"architectures": [
|
4 |
"RobertaForSequenceClassification"
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
"eos_token_id": 2,
|
10 |
"finetuning_task": "tecla",
|
11 |
"gradient_checkpointing": false,
|
|
|
13 |
"hidden_dropout_prob": 0.1,
|
14 |
"hidden_size": 768,
|
15 |
"id2label": {
|
16 |
+
"0": "Llengua",
|
17 |
+
"1": "Infraestructures",
|
18 |
+
"2": "Arts",
|
19 |
+
"3": "Parlament",
|
20 |
+
"4": "Noves tecnologies",
|
21 |
+
"5": "Castells",
|
22 |
+
"6": "Successos",
|
23 |
+
"7": "Empresa",
|
24 |
+
"8": "Mobilitat",
|
25 |
+
"9": "Teatre",
|
26 |
+
"10": "Treball",
|
27 |
+
"11": "Log\u00edstica",
|
28 |
+
"12": "Urbanisme",
|
29 |
+
"13": "Govern",
|
30 |
+
"14": "Entitats",
|
31 |
+
"15": "Finances",
|
32 |
+
"16": "Govern espanyol",
|
33 |
+
"17": "Tr\u00e0nsit",
|
34 |
+
"18": "Ind\u00fastria",
|
35 |
+
"19": "Esports",
|
36 |
+
"20": "Exteriors",
|
37 |
+
"21": "Medi ambient",
|
38 |
+
"22": "Habitatge",
|
39 |
+
"23": "Salut",
|
40 |
+
"24": "Equipaments i patrimoni",
|
41 |
+
"25": "Recerca",
|
42 |
+
"26": "Cooperaci\u00f3",
|
43 |
+
"27": "Innovaci\u00f3",
|
44 |
+
"28": "Agroalimentaci\u00f3",
|
45 |
+
"29": "Policial",
|
46 |
+
"30": "Serveis Socials",
|
47 |
+
"31": "Cinema",
|
48 |
+
"32": "Mem\u00f2ria hist\u00f2rica",
|
49 |
+
"33": "Turisme",
|
50 |
+
"34": "Pol\u00edtica municipal",
|
51 |
+
"35": "Comer\u00e7",
|
52 |
+
"36": "Universitats",
|
53 |
+
"37": "Hisenda",
|
54 |
+
"38": "Judicial",
|
55 |
+
"39": "Partits",
|
56 |
+
"40": "M\u00fasica",
|
57 |
+
"41": "Lletres",
|
58 |
+
"42": "Religi\u00f3",
|
59 |
+
"43": "Festa i cultura popular",
|
60 |
+
"44": "Uni\u00f3 Europea",
|
61 |
+
"45": "Moda",
|
62 |
+
"46": "Moviments socials",
|
63 |
+
"47": "Comptes p\u00fablics",
|
64 |
+
"48": "Immigraci\u00f3",
|
65 |
+
"49": "Educaci\u00f3",
|
66 |
+
"50": "Gastronomia",
|
67 |
+
"51": "Meteorologia",
|
68 |
+
"52": "Energia"
|
69 |
},
|
70 |
"initializer_range": 0.02,
|
71 |
"intermediate_size": 3072,
|
72 |
"label2id": {
|
73 |
+
"Agroalimentaci\u00f3": 28,
|
74 |
+
"Arts": 2,
|
75 |
+
"Castells": 5,
|
76 |
+
"Cinema": 31,
|
77 |
+
"Comer\u00e7": 35,
|
78 |
+
"Comptes p\u00fablics": 47,
|
79 |
+
"Cooperaci\u00f3": 26,
|
80 |
+
"Educaci\u00f3": 49,
|
81 |
+
"Empresa": 7,
|
82 |
+
"Energia": 52,
|
83 |
+
"Entitats": 14,
|
84 |
+
"Equipaments i patrimoni": 24,
|
85 |
+
"Esports": 19,
|
86 |
+
"Exteriors": 20,
|
87 |
+
"Festa i cultura popular": 43,
|
88 |
+
"Finances": 15,
|
89 |
+
"Gastronomia": 50,
|
90 |
+
"Govern": 13,
|
91 |
+
"Govern espanyol": 16,
|
92 |
+
"Habitatge": 22,
|
93 |
+
"Hisenda": 37,
|
94 |
+
"Immigraci\u00f3": 48,
|
95 |
+
"Ind\u00fastria": 18,
|
96 |
+
"Infraestructures": 1,
|
97 |
+
"Innovaci\u00f3": 27,
|
98 |
+
"Judicial": 38,
|
99 |
+
"Llengua": 0,
|
100 |
+
"Lletres": 41,
|
101 |
+
"Log\u00edstica": 11,
|
102 |
+
"Medi ambient": 21,
|
103 |
+
"Mem\u00f2ria hist\u00f2rica": 32,
|
104 |
+
"Meteorologia": 51,
|
105 |
+
"Mobilitat": 8,
|
106 |
+
"Moda": 45,
|
107 |
+
"Moviments socials": 46,
|
108 |
+
"M\u00fasica": 40,
|
109 |
+
"Noves tecnologies": 4,
|
110 |
+
"Parlament": 3,
|
111 |
+
"Partits": 39,
|
112 |
+
"Policial": 29,
|
113 |
+
"Pol\u00edtica municipal": 34,
|
114 |
+
"Recerca": 25,
|
115 |
+
"Religi\u00f3": 42,
|
116 |
+
"Salut": 23,
|
117 |
+
"Serveis Socials": 30,
|
118 |
+
"Successos": 6,
|
119 |
+
"Teatre": 9,
|
120 |
+
"Treball": 10,
|
121 |
+
"Tr\u00e0nsit": 17,
|
122 |
+
"Turisme": 33,
|
123 |
+
"Universitats": 36,
|
124 |
+
"Uni\u00f3 Europea": 44,
|
125 |
+
"Urbanisme": 12
|
126 |
},
|
127 |
"layer_norm_eps": 1e-05,
|
128 |
"max_position_embeddings": 514,
|
|
|
132 |
"pad_token_id": 1,
|
133 |
"position_embedding_type": "absolute",
|
134 |
"problem_type": "single_label_classification",
|
135 |
+
"torch_dtype": "float32",
|
136 |
+
"transformers_version": "4.17.0",
|
137 |
"type_vocab_size": 1,
|
138 |
"use_cache": true,
|
139 |
"vocab_size": 50262
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4e13e309d6f6b36be7736992f9164db10e421c8abadf61128f44759237fd686
|
3 |
+
size 498822701
|
tokenizer.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"errors": "replace", "bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": true, "trim_offsets": true, "max_len": 512, "special_tokens_map_file": null, "name_or_path": "/gpfs/projects/bsc88/projects/catalan_evaluation/models/roberta-base-ca-v2", "tokenizer_class": "RobertaTokenizer"}
|