carlosdanielhernandezmena commited on
Commit
761ee23
1 Parent(s): 7d80113

Adding info to the readme file

Browse files
Files changed (1) hide show
  1. README.md +173 -1
README.md CHANGED
@@ -14,4 +14,176 @@ tags:
14
  - barcelona-supercomputing-center
15
  - automatic-speech-recognition
16
  - whisper-large-v3
17
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  - barcelona-supercomputing-center
15
  - automatic-speech-recognition
16
  - whisper-large-v3
17
+ ---
18
+
19
+ # whisper-large-v3-tiny-caesar
20
+
21
+ ## Table of Contents
22
+ <details>
23
+ <summary>Click to expand</summary>
24
+
25
+ - [Model Description](#model-description)
26
+ - [Intended Uses and Limitations](#intended-uses-and-limitations)
27
+ - [How to Get Started with the Model](#how-to-get-started-with-the-model)
28
+ - [Training Details](#training-details)
29
+ - [Citation](#citation)
30
+ - [Additional Information](#additional-information)
31
+
32
+ </details>
33
+
34
+ ## Summary
35
+
36
+ The "whisper-large-v3-tiny-caesar" is an acoustic model based on ["openai/whisper-large-v3"](https://huggingface.co/openai/whisper-large-v3) suitable for Automatic Speech Recognition in code switching conditions between Spanish and Catalan.
37
+
38
+ ## Model Description
39
+
40
+ The "whisper-large-v3-tiny-caesar" is an acoustic model suitable for Automatic Speech Recognition in code switching conditions between Spanish and Catalan. It is the result of finetuning the model ["openai/whisper-large-v3"](https://huggingface.co/openai/whisper-large-v3) with 2 hours of synthetic code switching data in Spanish/Catalan generated by the [Projecte AINA](https://projecteaina.cat/) from Barcelona, Spain.
41
+
42
+ CAESAR is an acronym with the following meaning:
43
+
44
+ (CA)talan (ES)panish (A)utomatic (Recognition)
45
+
46
+ While "tiny" indicates that this model was finetuned with a very small amount of synthetic data (2 hours only).
47
+
48
+ ## Intended Uses and Limitations
49
+
50
+ This model can be used for Automatic Speech Recognition (ASR) in code switching conditions between Spanish and Catalan. The model is intended to transcribe audio files to plain text.
51
+
52
+ ## How to Get Started with the Model
53
+
54
+ To see an updated and functional version of this code, please see our our [Notebook](https://colab.research.google.com/drive/1MHiPrffNTwiyWeUyMQvSdSbfkef_8aJC?usp=sharing)
55
+
56
+ ### Installation
57
+
58
+ In order to use this model, you may install [datasets](https://huggingface.co/docs/datasets/installation) and [transformers](https://huggingface.co/docs/transformers/installation):
59
+
60
+ Create a virtual environment:
61
+ ```bash
62
+ python -m venv /path/to/venv
63
+ ```
64
+ Activate the environment:
65
+ ```bash
66
+ source /path/to/venv/bin/activate
67
+ ```
68
+ Install the modules:
69
+ ```bash
70
+ pip install datasets transformers
71
+ ```
72
+
73
+ ### For Inference
74
+ In order to transcribe audio in Catalan using this model, you can follow this example:
75
+
76
+ ```bash
77
+ #Install Prerequisites
78
+ pip install torch
79
+ pip install datasets
80
+ pip install 'transformers[torch]'
81
+ pip install evaluate
82
+ pip install jiwer
83
+ ```
84
+
85
+ ```python
86
+ #This code works with GPU
87
+
88
+ #Notice that: load_metric is no longer part of datasets.
89
+ #you have to remove it and use evaluate's load instead.
90
+ #(Note from November 2024)
91
+
92
+ import torch
93
+ from transformers import WhisperForConditionalGeneration, WhisperProcessor
94
+
95
+ #Load the processor and model.
96
+ MODEL_NAME="projecte-aina/whisper-large-v3-tiny-caesar"
97
+ processor = WhisperProcessor.from_pretrained(MODEL_NAME)
98
+ model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME).to("cuda")
99
+
100
+ #Load the dataset
101
+ from datasets import load_dataset, load_metric, Audio
102
+ ds=load_dataset("projecte-aina/3catparla_asr",split='test')
103
+
104
+ #Downsample to 16kHz
105
+ ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
106
+
107
+ #Process the dataset
108
+ def map_to_pred(batch):
109
+ audio = batch["audio"]
110
+ input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
111
+ batch["reference"] = processor.tokenizer._normalize(batch['normalized_text'])
112
+
113
+ with torch.no_grad():
114
+ predicted_ids = model.generate(input_features.to("cuda"))[0]
115
+
116
+ transcription = processor.decode(predicted_ids)
117
+ batch["prediction"] = processor.tokenizer._normalize(transcription)
118
+
119
+ return batch
120
+
121
+ #Do the evaluation
122
+ result = ds.map(map_to_pred)
123
+
124
+ #Compute the overall WER now.
125
+ from evaluate import load
126
+
127
+ wer = load("wer")
128
+ WER=100 * wer.compute(references=result["reference"], predictions=result["prediction"])
129
+ print(WER)
130
+ ```
131
+
132
+ ## Training Details
133
+
134
+ ### Training data
135
+
136
+ The specific dataset used to create the model is a corpus called CAESAR-tiny which has not been released at the moment.
137
+
138
+ ### Training procedure
139
+
140
+ This model is the result of finetuning the model ["openai/whisper-large-v3"](https://huggingface.co/openai/whisper-large-v3) by following this [tutorial](https://huggingface.co/blog/fine-tune-whisper) provided by Hugging Face.
141
+
142
+ ### Training Hyperparameters
143
+
144
+ * language: Spanish
145
+ * hours of training audio: 2
146
+ * learning rate: 1e-5
147
+ * sample rate: 16000
148
+ * train batch size: 32 (x4 GPUs)
149
+ * gradient accumulation steps: 1
150
+ * eval batch size: 32
151
+ * save total limit: 3
152
+ * max steps: 80
153
+ * warmup steps: 8
154
+ * eval steps: 8
155
+ * save steps: 8
156
+ * shuffle buffer size: 480
157
+
158
+ ## Citation
159
+ If this model contributes to your research, please cite the work:
160
+ ```bibtex
161
+ @misc{mena2024whisperlarge3catparla,
162
+ title={Acoustic Model in Catalan: whisper-large-v3-tiny-caesar.},
163
+ author={Hernandez Mena, Carlos Daniel; Giraldo, Jose ;Armentano-Oller, Carme; Solito, Sarah; Messaoudi, Abir; Acosta, Federico; Zeballos, Rodolfo},
164
+ organization={Barcelona Supercomputing Center},
165
+ url={https://huggingface.co/projecte-aina/whisper-large-v3-tiny-caesar},
166
+ year={2024}
167
+ }
168
+ ```
169
+
170
+ ## Additional Information
171
+
172
+ ### Author
173
+
174
+ The fine-tuning process was perform during November (2024) in the [Language Technologies Unit](https://huggingface.co/BSC-LT) of the [Barcelona Supercomputing Center](https://www.bsc.es/) by [Carlos Daniel Hernández Mena](https://huggingface.co/carlosdanielhernandezmena).
175
+
176
+ ### Contact
177
+ For further information, please send an email to <langtech@bsc.es>.
178
+
179
+ ### Copyright
180
+ Copyright(c) 2024 by Language Technologies Unit, Barcelona Supercomputing Center.
181
+
182
+ ### License
183
+
184
+ [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0)
185
+
186
+ ### Funding
187
+ This work has been promoted and financed by the Generalitat de Catalunya through the [Aina project](https://projecteaina.cat/).
188
+
189
+ The training of the model was possible thanks to the compute time provided by [Barcelona Supercomputing Center](https://www.bsc.es/) through MareNostrum 5.