Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -3.85 +/- 1.16
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88aa3799a20172e1cf8452327924fd2b86f020e39fb9a3bbe3a961aaa92cb09b
|
3 |
+
size 108023
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2e8d43fee0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f2e8d4b7b40>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1678141768324311376,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+orcPrKAOLyTwBc/+orcPrKAOLyTwBc/+orcPrKAOLyTwBc/+orcPrKAOLyTwBc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAOC2Uv0luOT0XBbC/ApxrPzNVBz/YJ1S/OAyBPtzDVbxMK92//6PVP50OtL+gVEI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD6itw+soA4vJPAFz8cJAA8CEj1umzcFzv6itw+soA4vJPAFz8cJAA8CEj1umzcFzv6itw+soA4vJPAFz8cJAA8CEj1umzcFzv6itw+soA4vJPAFz8cJAA8CEj1umzcFzuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.4307478 -0.01126115 0.5927822 ]\n [ 0.4307478 -0.01126115 0.5927822 ]\n [ 0.4307478 -0.01126115 0.5927822 ]\n [ 0.4307478 -0.01126115 0.5927822 ]]",
|
60 |
+
"desired_goal": "[[-1.15763 0.04527119 -1.3751553 ]\n [ 0.92034924 0.5286438 -0.82873297]\n [ 0.25204635 -0.01304718 -1.7278838 ]\n [ 1.6690673 -1.406696 0.7591038 ]]",
|
61 |
+
"observation": "[[ 0.4307478 -0.01126115 0.5927822 0.00782111 -0.00187135 0.00231722]\n [ 0.4307478 -0.01126115 0.5927822 0.00782111 -0.00187135 0.00231722]\n [ 0.4307478 -0.01126115 0.5927822 0.00782111 -0.00187135 0.00231722]\n [ 0.4307478 -0.01126115 0.5927822 0.00782111 -0.00187135 0.00231722]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAy0EAPksItT032mc+ZS3Mu/uCFL7kg4w+gI+JvUr+4r3kznY93BD9vHf2370GvpQ6lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.12525098 0.08839472 0.22641836]\n [-0.006231 -0.1450309 0.27444375]\n [-0.06716824 -0.11083658 0.0602559 ]\n [-0.03089183 -0.10935681 0.00113481]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVp3VAnuM/b+UhpRSlIwBbJRLMowBdJRHQKi6mFrVOKx1fZQoaAZoCWgPQwieI/JdSp0GwJSGlFKUaBVLMmgWR0Coulou5BkadX2UKGgGaAloD0MIYYvdPqvsEsCUhpRSlGgVSzJoFkdAqLoaekHlfnV9lChoBmgJaA9DCN0jm6vm+RPAlIaUUpRoFUsyaBZHQKi524//vOR1fZQoaAZoCWgPQwgQejarPvcIwJSGlFKUaBVLMmgWR0Cou7tSIgvEdX2UKGgGaAloD0MIf4l46/w7D8CUhpRSlGgVSzJoFkdAqLt8/OdGzHV9lChoBmgJaA9DCAWnPpC8UwLAlIaUUpRoFUsyaBZHQKi7PUMoc711fZQoaAZoCWgPQwhh+l5DcFwQwJSGlFKUaBVLMmgWR0Couv5w4sErdX2UKGgGaAloD0MIZJY9CWzOCcCUhpRSlGgVSzJoFkdAqLzOqFRHgHV9lChoBmgJaA9DCAZlGk0uJg3AlIaUUpRoFUsyaBZHQKi8kE9Mbm51fZQoaAZoCWgPQwhM4qyImigOwJSGlFKUaBVLMmgWR0CovFDd56dEdX2UKGgGaAloD0MILC6Oyk3UDcCUhpRSlGgVSzJoFkdAqLwSWeHzpXV9lChoBmgJaA9DCPinVImydwbAlIaUUpRoFUsyaBZHQKi968Gs3hp1fZQoaAZoCWgPQwiUSnhCrz/8v5SGlFKUaBVLMmgWR0Cova3VLBbfdX2UKGgGaAloD0MI7dRcbjDUAsCUhpRSlGgVSzJoFkdAqL1t/QSi/XV9lChoBmgJaA9DCC++aI8XUgjAlIaUUpRoFUsyaBZHQKi9L0cOskp1fZQoaAZoCWgPQwgWwJSBA/oKwJSGlFKUaBVLMmgWR0Covwrmhdt3dX2UKGgGaAloD0MIjZlEveAzE8CUhpRSlGgVSzJoFkdAqL7MidJ8OXV9lChoBmgJaA9DCO2BVmDIygrAlIaUUpRoFUsyaBZHQKi+jMURFql1fZQoaAZoCWgPQwgX1SKimLwLwJSGlFKUaBVLMmgWR0Covk37Lt/ndX2UKGgGaAloD0MIXHFxVG7CEsCUhpRSlGgVSzJoFkdAqMAdKXfIjnV9lChoBmgJaA9DCDboS29/Lva/lIaUUpRoFUsyaBZHQKi/3y/9Hc11fZQoaAZoCWgPQwj3BInt7mEQwJSGlFKUaBVLMmgWR0Cov59IoVmBdX2UKGgGaAloD0MIObnfoSiQDcCUhpRSlGgVSzJoFkdAqL9gb+98JHV9lChoBmgJaA9DCBNm2v6V1f+/lIaUUpRoFUsyaBZHQKjBzy3kPtl1fZQoaAZoCWgPQwitUQ/R6K4LwJSGlFKUaBVLMmgWR0CowZFfqoqDdX2UKGgGaAloD0MIelImNbQhDMCUhpRSlGgVSzJoFkdAqMFSFh5PdnV9lChoBmgJaA9DCGpOXmQCfv6/lIaUUpRoFUsyaBZHQKjBE78Nx2l1fZQoaAZoCWgPQwgB4Niz5/ILwJSGlFKUaBVLMmgWR0Cow3syi22HdX2UKGgGaAloD0MI4nK8AtEzCMCUhpRSlGgVSzJoFkdAqMM9ZmqYJHV9lChoBmgJaA9DCINMMnIWdhLAlIaUUpRoFUsyaBZHQKjC/pNbkfd1fZQoaAZoCWgPQwgGu2HboswVwJSGlFKUaBVLMmgWR0CowsDDKoycdX2UKGgGaAloD0MIRE5fz9dsBMCUhpRSlGgVSzJoFkdAqMU2HnEET3V9lChoBmgJaA9DCLfvUX+9QgrAlIaUUpRoFUsyaBZHQKjE+EjgQ6J1fZQoaAZoCWgPQwiie9Y1Wg4EwJSGlFKUaBVLMmgWR0CoxLmjj7yhdX2UKGgGaAloD0MIIZBLHHmgAcCUhpRSlGgVSzJoFkdAqMR7wtrbg3V9lChoBmgJaA9DCIKq0asBqgnAlIaUUpRoFUsyaBZHQKjG3jm0VrR1fZQoaAZoCWgPQwhRvMrapsgQwJSGlFKUaBVLMmgWR0CoxqBNdqtYdX2UKGgGaAloD0MIwTi4dMzZA8CUhpRSlGgVSzJoFkdAqMZhXOnl4nV9lChoBmgJaA9DCEvNHmgF5hLAlIaUUpRoFUsyaBZHQKjGIuTRplB1fZQoaAZoCWgPQwjf+rDeqHULwJSGlFKUaBVLMmgWR0CoyKUe2d/bdX2UKGgGaAloD0MIMZqV7UOeEMCUhpRSlGgVSzJoFkdAqMhnu7YkFHV9lChoBmgJaA9DCAe2SrA4vA3AlIaUUpRoFUsyaBZHQKjIKLm6oVF1fZQoaAZoCWgPQwjoa5bLRkcBwJSGlFKUaBVLMmgWR0Cox+qf4AS4dX2UKGgGaAloD0MI/nvw2qXNDMCUhpRSlGgVSzJoFkdAqMpSbKA8S3V9lChoBmgJaA9DCMLDtG/ur/y/lIaUUpRoFUsyaBZHQKjKFQfp2U11fZQoaAZoCWgPQwiE8dO4N88YwJSGlFKUaBVLMmgWR0CoydWhh6SldX2UKGgGaAloD0MIWTZzSGphEcCUhpRSlGgVSzJoFkdAqMmXmcOLBXV9lChoBmgJaA9DCNhjIqXZvP2/lIaUUpRoFUsyaBZHQKjLkETxoZh1fZQoaAZoCWgPQwjZlgFnKdkPwJSGlFKUaBVLMmgWR0Coy1JKBd2QdX2UKGgGaAloD0MI94+F6BD4DsCUhpRSlGgVSzJoFkdAqMsSWVu76HV9lChoBmgJaA9DCEwYzcr2wQ7AlIaUUpRoFUsyaBZHQKjK01E3Kjl1fZQoaAZoCWgPQwgOh6WBH5X6v5SGlFKUaBVLMmgWR0CozJy8zyjIdX2UKGgGaAloD0MIsaiI00nmFMCUhpRSlGgVSzJoFkdAqMxePgeijHV9lChoBmgJaA9DCBVypZ4F4RfAlIaUUpRoFUsyaBZHQKjMHoEjgQ91fZQoaAZoCWgPQwjEP2zp0fQHwJSGlFKUaBVLMmgWR0Coy995IH1OdX2UKGgGaAloD0MIQxzr4ja6CcCUhpRSlGgVSzJoFkdAqM2cQRPGhnV9lChoBmgJaA9DCIpbBTHQVRbAlIaUUpRoFUsyaBZHQKjNXbaAWi11fZQoaAZoCWgPQwiy9KEL6psFwJSGlFKUaBVLMmgWR0CozR4gA6uGdX2UKGgGaAloD0MIXcDLDBtlA8CUhpRSlGgVSzJoFkdAqMzfX/YJ3XV9lChoBmgJaA9DCPCGNCpwMgXAlIaUUpRoFUsyaBZHQKjOt4k/r0J1fZQoaAZoCWgPQwiGIXL6ev4AwJSGlFKUaBVLMmgWR0CoznkJjUd8dX2UKGgGaAloD0MI4IPXLm34AsCUhpRSlGgVSzJoFkdAqM45SLqD9XV9lChoBmgJaA9DCHEbDeAtUADAlIaUUpRoFUsyaBZHQKjN+k2xY7t1fZQoaAZoCWgPQwizsRLzrPQZwJSGlFKUaBVLMmgWR0Coz8mZeAuqdX2UKGgGaAloD0MIjpJX5xgwFMCUhpRSlGgVSzJoFkdAqM+LPldTpHV9lChoBmgJaA9DCGnlXmBWiBfAlIaUUpRoFUsyaBZHQKjPS4FzMid1fZQoaAZoCWgPQwgwgVt381QPwJSGlFKUaBVLMmgWR0Cozwx+z+m4dX2UKGgGaAloD0MIm3PwTGiSDsCUhpRSlGgVSzJoFkdAqNDUIw/PgXV9lChoBmgJaA9DCOIGfH4YwQfAlIaUUpRoFUsyaBZHQKjQlch1Tzd1fZQoaAZoCWgPQwjlXmBWKJINwJSGlFKUaBVLMmgWR0Co0FX7DVH4dX2UKGgGaAloD0MIAoOkT6sIB8CUhpRSlGgVSzJoFkdAqNAW5z5oG3V9lChoBmgJaA9DCJ4lyAiosAXAlIaUUpRoFUsyaBZHQKjR5YVZcLV1fZQoaAZoCWgPQwh8tDhjmDMNwJSGlFKUaBVLMmgWR0Co0aeIl+mWdX2UKGgGaAloD0MIaeOItfhUFMCUhpRSlGgVSzJoFkdAqNFn8qFyrHV9lChoBmgJaA9DCC9NEeD0rgvAlIaUUpRoFUsyaBZHQKjRKSAYpDx1fZQoaAZoCWgPQwj35GGh1jQLwJSGlFKUaBVLMmgWR0Co0uCdat9ydX2UKGgGaAloD0MItp+M8WGWAsCUhpRSlGgVSzJoFkdAqNKiYZ2pynV9lChoBmgJaA9DCDwW26SiUQLAlIaUUpRoFUsyaBZHQKjSYoH9m6J1fZQoaAZoCWgPQwhKsg5HV6kLwJSGlFKUaBVLMmgWR0Co0iN83MpxdX2UKGgGaAloD0MI2lcepKfoE8CUhpRSlGgVSzJoFkdAqNQHZkCmuXV9lChoBmgJaA9DCMCSq1j85gTAlIaUUpRoFUsyaBZHQKjTyTQE6kt1fZQoaAZoCWgPQwhbKJmc2pkUwJSGlFKUaBVLMmgWR0Co04ltbcGkdX2UKGgGaAloD0MIBP7w89+DEMCUhpRSlGgVSzJoFkdAqNNKpo9LYnV9lChoBmgJaA9DCH1Z2qm5XAnAlIaUUpRoFUsyaBZHQKjVH9Hc1wZ1fZQoaAZoCWgPQwgmcOtungoKwJSGlFKUaBVLMmgWR0Co1OIvalDXdX2UKGgGaAloD0MI6peIt84/CsCUhpRSlGgVSzJoFkdAqNSitknTiXV9lChoBmgJaA9DCIVE2safSA3AlIaUUpRoFUsyaBZHQKjUY8cMmWt1fZQoaAZoCWgPQwixGktYGwMFwJSGlFKUaBVLMmgWR0Co1jXUQTVUdX2UKGgGaAloD0MIATJ07KDyDsCUhpRSlGgVSzJoFkdAqNX3i97F9HV9lChoBmgJaA9DCM5V8xyRrwbAlIaUUpRoFUsyaBZHQKjVuDYh+v11fZQoaAZoCWgPQwjkMJi/QmYVwJSGlFKUaBVLMmgWR0Co1XlC9h7WdX2UKGgGaAloD0MILEgzFk2XEsCUhpRSlGgVSzJoFkdAqNdR9AooeHV9lChoBmgJaA9DCKVrJt9s8xTAlIaUUpRoFUsyaBZHQKjXFGo73f11fZQoaAZoCWgPQwixa3u7JTkFwJSGlFKUaBVLMmgWR0Co1tUjs2NvdX2UKGgGaAloD0MIYyZRL/gUA8CUhpRSlGgVSzJoFkdAqNaXZCfHxXV9lChoBmgJaA9DCBRf7SjOIRDAlIaUUpRoFUsyaBZHQKjYWiliz9l1fZQoaAZoCWgPQwiS6dDpeWcTwJSGlFKUaBVLMmgWR0Co2BvZh8YydX2UKGgGaAloD0MI170ViQl6FcCUhpRSlGgVSzJoFkdAqNfcEovzv3V9lChoBmgJaA9DCLWlDvJ6UATAlIaUUpRoFUsyaBZHQKjXnUVi4KB1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce544c8d3aa1e0da47f47812f969e7ffec8066b916761d7bca5270e92f44d82f
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba6631a15e952ef71f3db66df186cf7c1d45f3bd2d3008506428e6fde80d1365
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2e8d43fee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2e8d4b7b40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678141768324311376, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+orcPrKAOLyTwBc/+orcPrKAOLyTwBc/+orcPrKAOLyTwBc/+orcPrKAOLyTwBc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAOC2Uv0luOT0XBbC/ApxrPzNVBz/YJ1S/OAyBPtzDVbxMK92//6PVP50OtL+gVEI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD6itw+soA4vJPAFz8cJAA8CEj1umzcFzv6itw+soA4vJPAFz8cJAA8CEj1umzcFzv6itw+soA4vJPAFz8cJAA8CEj1umzcFzv6itw+soA4vJPAFz8cJAA8CEj1umzcFzuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4307478 -0.01126115 0.5927822 ]\n [ 0.4307478 -0.01126115 0.5927822 ]\n [ 0.4307478 -0.01126115 0.5927822 ]\n [ 0.4307478 -0.01126115 0.5927822 ]]", "desired_goal": "[[-1.15763 0.04527119 -1.3751553 ]\n [ 0.92034924 0.5286438 -0.82873297]\n [ 0.25204635 -0.01304718 -1.7278838 ]\n [ 1.6690673 -1.406696 0.7591038 ]]", "observation": "[[ 0.4307478 -0.01126115 0.5927822 0.00782111 -0.00187135 0.00231722]\n [ 0.4307478 -0.01126115 0.5927822 0.00782111 -0.00187135 0.00231722]\n [ 0.4307478 -0.01126115 0.5927822 0.00782111 -0.00187135 0.00231722]\n [ 0.4307478 -0.01126115 0.5927822 0.00782111 -0.00187135 0.00231722]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAy0EAPksItT032mc+ZS3Mu/uCFL7kg4w+gI+JvUr+4r3kznY93BD9vHf2370GvpQ6lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12525098 0.08839472 0.22641836]\n [-0.006231 -0.1450309 0.27444375]\n [-0.06716824 -0.11083658 0.0602559 ]\n [-0.03089183 -0.10935681 0.00113481]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVp3VAnuM/b+UhpRSlIwBbJRLMowBdJRHQKi6mFrVOKx1fZQoaAZoCWgPQwieI/JdSp0GwJSGlFKUaBVLMmgWR0Coulou5BkadX2UKGgGaAloD0MIYYvdPqvsEsCUhpRSlGgVSzJoFkdAqLoaekHlfnV9lChoBmgJaA9DCN0jm6vm+RPAlIaUUpRoFUsyaBZHQKi524//vOR1fZQoaAZoCWgPQwgQejarPvcIwJSGlFKUaBVLMmgWR0Cou7tSIgvEdX2UKGgGaAloD0MIf4l46/w7D8CUhpRSlGgVSzJoFkdAqLt8/OdGzHV9lChoBmgJaA9DCAWnPpC8UwLAlIaUUpRoFUsyaBZHQKi7PUMoc711fZQoaAZoCWgPQwhh+l5DcFwQwJSGlFKUaBVLMmgWR0Couv5w4sErdX2UKGgGaAloD0MIZJY9CWzOCcCUhpRSlGgVSzJoFkdAqLzOqFRHgHV9lChoBmgJaA9DCAZlGk0uJg3AlIaUUpRoFUsyaBZHQKi8kE9Mbm51fZQoaAZoCWgPQwhM4qyImigOwJSGlFKUaBVLMmgWR0CovFDd56dEdX2UKGgGaAloD0MILC6Oyk3UDcCUhpRSlGgVSzJoFkdAqLwSWeHzpXV9lChoBmgJaA9DCPinVImydwbAlIaUUpRoFUsyaBZHQKi968Gs3hp1fZQoaAZoCWgPQwiUSnhCrz/8v5SGlFKUaBVLMmgWR0Cova3VLBbfdX2UKGgGaAloD0MI7dRcbjDUAsCUhpRSlGgVSzJoFkdAqL1t/QSi/XV9lChoBmgJaA9DCC++aI8XUgjAlIaUUpRoFUsyaBZHQKi9L0cOskp1fZQoaAZoCWgPQwgWwJSBA/oKwJSGlFKUaBVLMmgWR0Covwrmhdt3dX2UKGgGaAloD0MIjZlEveAzE8CUhpRSlGgVSzJoFkdAqL7MidJ8OXV9lChoBmgJaA9DCO2BVmDIygrAlIaUUpRoFUsyaBZHQKi+jMURFql1fZQoaAZoCWgPQwgX1SKimLwLwJSGlFKUaBVLMmgWR0Covk37Lt/ndX2UKGgGaAloD0MIXHFxVG7CEsCUhpRSlGgVSzJoFkdAqMAdKXfIjnV9lChoBmgJaA9DCDboS29/Lva/lIaUUpRoFUsyaBZHQKi/3y/9Hc11fZQoaAZoCWgPQwj3BInt7mEQwJSGlFKUaBVLMmgWR0Cov59IoVmBdX2UKGgGaAloD0MIObnfoSiQDcCUhpRSlGgVSzJoFkdAqL9gb+98JHV9lChoBmgJaA9DCBNm2v6V1f+/lIaUUpRoFUsyaBZHQKjBzy3kPtl1fZQoaAZoCWgPQwitUQ/R6K4LwJSGlFKUaBVLMmgWR0CowZFfqoqDdX2UKGgGaAloD0MIelImNbQhDMCUhpRSlGgVSzJoFkdAqMFSFh5PdnV9lChoBmgJaA9DCGpOXmQCfv6/lIaUUpRoFUsyaBZHQKjBE78Nx2l1fZQoaAZoCWgPQwgB4Niz5/ILwJSGlFKUaBVLMmgWR0Cow3syi22HdX2UKGgGaAloD0MI4nK8AtEzCMCUhpRSlGgVSzJoFkdAqMM9ZmqYJHV9lChoBmgJaA9DCINMMnIWdhLAlIaUUpRoFUsyaBZHQKjC/pNbkfd1fZQoaAZoCWgPQwgGu2HboswVwJSGlFKUaBVLMmgWR0CowsDDKoycdX2UKGgGaAloD0MIRE5fz9dsBMCUhpRSlGgVSzJoFkdAqMU2HnEET3V9lChoBmgJaA9DCLfvUX+9QgrAlIaUUpRoFUsyaBZHQKjE+EjgQ6J1fZQoaAZoCWgPQwiie9Y1Wg4EwJSGlFKUaBVLMmgWR0CoxLmjj7yhdX2UKGgGaAloD0MIIZBLHHmgAcCUhpRSlGgVSzJoFkdAqMR7wtrbg3V9lChoBmgJaA9DCIKq0asBqgnAlIaUUpRoFUsyaBZHQKjG3jm0VrR1fZQoaAZoCWgPQwhRvMrapsgQwJSGlFKUaBVLMmgWR0CoxqBNdqtYdX2UKGgGaAloD0MIwTi4dMzZA8CUhpRSlGgVSzJoFkdAqMZhXOnl4nV9lChoBmgJaA9DCEvNHmgF5hLAlIaUUpRoFUsyaBZHQKjGIuTRplB1fZQoaAZoCWgPQwjf+rDeqHULwJSGlFKUaBVLMmgWR0CoyKUe2d/bdX2UKGgGaAloD0MIMZqV7UOeEMCUhpRSlGgVSzJoFkdAqMhnu7YkFHV9lChoBmgJaA9DCAe2SrA4vA3AlIaUUpRoFUsyaBZHQKjIKLm6oVF1fZQoaAZoCWgPQwjoa5bLRkcBwJSGlFKUaBVLMmgWR0Cox+qf4AS4dX2UKGgGaAloD0MI/nvw2qXNDMCUhpRSlGgVSzJoFkdAqMpSbKA8S3V9lChoBmgJaA9DCMLDtG/ur/y/lIaUUpRoFUsyaBZHQKjKFQfp2U11fZQoaAZoCWgPQwiE8dO4N88YwJSGlFKUaBVLMmgWR0CoydWhh6SldX2UKGgGaAloD0MIWTZzSGphEcCUhpRSlGgVSzJoFkdAqMmXmcOLBXV9lChoBmgJaA9DCNhjIqXZvP2/lIaUUpRoFUsyaBZHQKjLkETxoZh1fZQoaAZoCWgPQwjZlgFnKdkPwJSGlFKUaBVLMmgWR0Coy1JKBd2QdX2UKGgGaAloD0MI94+F6BD4DsCUhpRSlGgVSzJoFkdAqMsSWVu76HV9lChoBmgJaA9DCEwYzcr2wQ7AlIaUUpRoFUsyaBZHQKjK01E3Kjl1fZQoaAZoCWgPQwgOh6WBH5X6v5SGlFKUaBVLMmgWR0CozJy8zyjIdX2UKGgGaAloD0MIsaiI00nmFMCUhpRSlGgVSzJoFkdAqMxePgeijHV9lChoBmgJaA9DCBVypZ4F4RfAlIaUUpRoFUsyaBZHQKjMHoEjgQ91fZQoaAZoCWgPQwjEP2zp0fQHwJSGlFKUaBVLMmgWR0Coy995IH1OdX2UKGgGaAloD0MIQxzr4ja6CcCUhpRSlGgVSzJoFkdAqM2cQRPGhnV9lChoBmgJaA9DCIpbBTHQVRbAlIaUUpRoFUsyaBZHQKjNXbaAWi11fZQoaAZoCWgPQwiy9KEL6psFwJSGlFKUaBVLMmgWR0CozR4gA6uGdX2UKGgGaAloD0MIXcDLDBtlA8CUhpRSlGgVSzJoFkdAqMzfX/YJ3XV9lChoBmgJaA9DCPCGNCpwMgXAlIaUUpRoFUsyaBZHQKjOt4k/r0J1fZQoaAZoCWgPQwiGIXL6ev4AwJSGlFKUaBVLMmgWR0CoznkJjUd8dX2UKGgGaAloD0MI4IPXLm34AsCUhpRSlGgVSzJoFkdAqM45SLqD9XV9lChoBmgJaA9DCHEbDeAtUADAlIaUUpRoFUsyaBZHQKjN+k2xY7t1fZQoaAZoCWgPQwizsRLzrPQZwJSGlFKUaBVLMmgWR0Coz8mZeAuqdX2UKGgGaAloD0MIjpJX5xgwFMCUhpRSlGgVSzJoFkdAqM+LPldTpHV9lChoBmgJaA9DCGnlXmBWiBfAlIaUUpRoFUsyaBZHQKjPS4FzMid1fZQoaAZoCWgPQwgwgVt381QPwJSGlFKUaBVLMmgWR0Cozwx+z+m4dX2UKGgGaAloD0MIm3PwTGiSDsCUhpRSlGgVSzJoFkdAqNDUIw/PgXV9lChoBmgJaA9DCOIGfH4YwQfAlIaUUpRoFUsyaBZHQKjQlch1Tzd1fZQoaAZoCWgPQwjlXmBWKJINwJSGlFKUaBVLMmgWR0Co0FX7DVH4dX2UKGgGaAloD0MIAoOkT6sIB8CUhpRSlGgVSzJoFkdAqNAW5z5oG3V9lChoBmgJaA9DCJ4lyAiosAXAlIaUUpRoFUsyaBZHQKjR5YVZcLV1fZQoaAZoCWgPQwh8tDhjmDMNwJSGlFKUaBVLMmgWR0Co0aeIl+mWdX2UKGgGaAloD0MIaeOItfhUFMCUhpRSlGgVSzJoFkdAqNFn8qFyrHV9lChoBmgJaA9DCC9NEeD0rgvAlIaUUpRoFUsyaBZHQKjRKSAYpDx1fZQoaAZoCWgPQwj35GGh1jQLwJSGlFKUaBVLMmgWR0Co0uCdat9ydX2UKGgGaAloD0MItp+M8WGWAsCUhpRSlGgVSzJoFkdAqNKiYZ2pynV9lChoBmgJaA9DCDwW26SiUQLAlIaUUpRoFUsyaBZHQKjSYoH9m6J1fZQoaAZoCWgPQwhKsg5HV6kLwJSGlFKUaBVLMmgWR0Co0iN83MpxdX2UKGgGaAloD0MI2lcepKfoE8CUhpRSlGgVSzJoFkdAqNQHZkCmuXV9lChoBmgJaA9DCMCSq1j85gTAlIaUUpRoFUsyaBZHQKjTyTQE6kt1fZQoaAZoCWgPQwhbKJmc2pkUwJSGlFKUaBVLMmgWR0Co04ltbcGkdX2UKGgGaAloD0MIBP7w89+DEMCUhpRSlGgVSzJoFkdAqNNKpo9LYnV9lChoBmgJaA9DCH1Z2qm5XAnAlIaUUpRoFUsyaBZHQKjVH9Hc1wZ1fZQoaAZoCWgPQwgmcOtungoKwJSGlFKUaBVLMmgWR0Co1OIvalDXdX2UKGgGaAloD0MI6peIt84/CsCUhpRSlGgVSzJoFkdAqNSitknTiXV9lChoBmgJaA9DCIVE2safSA3AlIaUUpRoFUsyaBZHQKjUY8cMmWt1fZQoaAZoCWgPQwixGktYGwMFwJSGlFKUaBVLMmgWR0Co1jXUQTVUdX2UKGgGaAloD0MIATJ07KDyDsCUhpRSlGgVSzJoFkdAqNX3i97F9HV9lChoBmgJaA9DCM5V8xyRrwbAlIaUUpRoFUsyaBZHQKjVuDYh+v11fZQoaAZoCWgPQwjkMJi/QmYVwJSGlFKUaBVLMmgWR0Co1XlC9h7WdX2UKGgGaAloD0MILEgzFk2XEsCUhpRSlGgVSzJoFkdAqNdR9AooeHV9lChoBmgJaA9DCKVrJt9s8xTAlIaUUpRoFUsyaBZHQKjXFGo73f11fZQoaAZoCWgPQwixa3u7JTkFwJSGlFKUaBVLMmgWR0Co1tUjs2NvdX2UKGgGaAloD0MIYyZRL/gUA8CUhpRSlGgVSzJoFkdAqNaXZCfHxXV9lChoBmgJaA9DCBRf7SjOIRDAlIaUUpRoFUsyaBZHQKjYWiliz9l1fZQoaAZoCWgPQwiS6dDpeWcTwJSGlFKUaBVLMmgWR0Co2BvZh8YydX2UKGgGaAloD0MI170ViQl6FcCUhpRSlGgVSzJoFkdAqNfcEovzv3V9lChoBmgJaA9DCLWlDvJ6UATAlIaUUpRoFUsyaBZHQKjXnUVi4KB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (760 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -3.8511611547321083, "std_reward": 1.1628644862327568, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-06T23:24:46.203620"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:302fbefdeeebbd53d934839327944eea73a4e98d68a7521e7dc1f1fd223fb539
|
3 |
+
size 3056
|