pryjuli commited on
Commit
a5eb0fc
1 Parent(s): 4f22e63

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.85 +/- 1.16
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88aa3799a20172e1cf8452327924fd2b86f020e39fb9a3bbe3a961aaa92cb09b
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2e8d43fee0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f2e8d4b7b40>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1678141768324311376,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+orcPrKAOLyTwBc/+orcPrKAOLyTwBc/+orcPrKAOLyTwBc/+orcPrKAOLyTwBc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAOC2Uv0luOT0XBbC/ApxrPzNVBz/YJ1S/OAyBPtzDVbxMK92//6PVP50OtL+gVEI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD6itw+soA4vJPAFz8cJAA8CEj1umzcFzv6itw+soA4vJPAFz8cJAA8CEj1umzcFzv6itw+soA4vJPAFz8cJAA8CEj1umzcFzv6itw+soA4vJPAFz8cJAA8CEj1umzcFzuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.4307478 -0.01126115 0.5927822 ]\n [ 0.4307478 -0.01126115 0.5927822 ]\n [ 0.4307478 -0.01126115 0.5927822 ]\n [ 0.4307478 -0.01126115 0.5927822 ]]",
60
+ "desired_goal": "[[-1.15763 0.04527119 -1.3751553 ]\n [ 0.92034924 0.5286438 -0.82873297]\n [ 0.25204635 -0.01304718 -1.7278838 ]\n [ 1.6690673 -1.406696 0.7591038 ]]",
61
+ "observation": "[[ 0.4307478 -0.01126115 0.5927822 0.00782111 -0.00187135 0.00231722]\n [ 0.4307478 -0.01126115 0.5927822 0.00782111 -0.00187135 0.00231722]\n [ 0.4307478 -0.01126115 0.5927822 0.00782111 -0.00187135 0.00231722]\n [ 0.4307478 -0.01126115 0.5927822 0.00782111 -0.00187135 0.00231722]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAy0EAPksItT032mc+ZS3Mu/uCFL7kg4w+gI+JvUr+4r3kznY93BD9vHf2370GvpQ6lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.12525098 0.08839472 0.22641836]\n [-0.006231 -0.1450309 0.27444375]\n [-0.06716824 -0.11083658 0.0602559 ]\n [-0.03089183 -0.10935681 0.00113481]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVp3VAnuM/b+UhpRSlIwBbJRLMowBdJRHQKi6mFrVOKx1fZQoaAZoCWgPQwieI/JdSp0GwJSGlFKUaBVLMmgWR0Coulou5BkadX2UKGgGaAloD0MIYYvdPqvsEsCUhpRSlGgVSzJoFkdAqLoaekHlfnV9lChoBmgJaA9DCN0jm6vm+RPAlIaUUpRoFUsyaBZHQKi524//vOR1fZQoaAZoCWgPQwgQejarPvcIwJSGlFKUaBVLMmgWR0Cou7tSIgvEdX2UKGgGaAloD0MIf4l46/w7D8CUhpRSlGgVSzJoFkdAqLt8/OdGzHV9lChoBmgJaA9DCAWnPpC8UwLAlIaUUpRoFUsyaBZHQKi7PUMoc711fZQoaAZoCWgPQwhh+l5DcFwQwJSGlFKUaBVLMmgWR0Couv5w4sErdX2UKGgGaAloD0MIZJY9CWzOCcCUhpRSlGgVSzJoFkdAqLzOqFRHgHV9lChoBmgJaA9DCAZlGk0uJg3AlIaUUpRoFUsyaBZHQKi8kE9Mbm51fZQoaAZoCWgPQwhM4qyImigOwJSGlFKUaBVLMmgWR0CovFDd56dEdX2UKGgGaAloD0MILC6Oyk3UDcCUhpRSlGgVSzJoFkdAqLwSWeHzpXV9lChoBmgJaA9DCPinVImydwbAlIaUUpRoFUsyaBZHQKi968Gs3hp1fZQoaAZoCWgPQwiUSnhCrz/8v5SGlFKUaBVLMmgWR0Cova3VLBbfdX2UKGgGaAloD0MI7dRcbjDUAsCUhpRSlGgVSzJoFkdAqL1t/QSi/XV9lChoBmgJaA9DCC++aI8XUgjAlIaUUpRoFUsyaBZHQKi9L0cOskp1fZQoaAZoCWgPQwgWwJSBA/oKwJSGlFKUaBVLMmgWR0Covwrmhdt3dX2UKGgGaAloD0MIjZlEveAzE8CUhpRSlGgVSzJoFkdAqL7MidJ8OXV9lChoBmgJaA9DCO2BVmDIygrAlIaUUpRoFUsyaBZHQKi+jMURFql1fZQoaAZoCWgPQwgX1SKimLwLwJSGlFKUaBVLMmgWR0Covk37Lt/ndX2UKGgGaAloD0MIXHFxVG7CEsCUhpRSlGgVSzJoFkdAqMAdKXfIjnV9lChoBmgJaA9DCDboS29/Lva/lIaUUpRoFUsyaBZHQKi/3y/9Hc11fZQoaAZoCWgPQwj3BInt7mEQwJSGlFKUaBVLMmgWR0Cov59IoVmBdX2UKGgGaAloD0MIObnfoSiQDcCUhpRSlGgVSzJoFkdAqL9gb+98JHV9lChoBmgJaA9DCBNm2v6V1f+/lIaUUpRoFUsyaBZHQKjBzy3kPtl1fZQoaAZoCWgPQwitUQ/R6K4LwJSGlFKUaBVLMmgWR0CowZFfqoqDdX2UKGgGaAloD0MIelImNbQhDMCUhpRSlGgVSzJoFkdAqMFSFh5PdnV9lChoBmgJaA9DCGpOXmQCfv6/lIaUUpRoFUsyaBZHQKjBE78Nx2l1fZQoaAZoCWgPQwgB4Niz5/ILwJSGlFKUaBVLMmgWR0Cow3syi22HdX2UKGgGaAloD0MI4nK8AtEzCMCUhpRSlGgVSzJoFkdAqMM9ZmqYJHV9lChoBmgJaA9DCINMMnIWdhLAlIaUUpRoFUsyaBZHQKjC/pNbkfd1fZQoaAZoCWgPQwgGu2HboswVwJSGlFKUaBVLMmgWR0CowsDDKoycdX2UKGgGaAloD0MIRE5fz9dsBMCUhpRSlGgVSzJoFkdAqMU2HnEET3V9lChoBmgJaA9DCLfvUX+9QgrAlIaUUpRoFUsyaBZHQKjE+EjgQ6J1fZQoaAZoCWgPQwiie9Y1Wg4EwJSGlFKUaBVLMmgWR0CoxLmjj7yhdX2UKGgGaAloD0MIIZBLHHmgAcCUhpRSlGgVSzJoFkdAqMR7wtrbg3V9lChoBmgJaA9DCIKq0asBqgnAlIaUUpRoFUsyaBZHQKjG3jm0VrR1fZQoaAZoCWgPQwhRvMrapsgQwJSGlFKUaBVLMmgWR0CoxqBNdqtYdX2UKGgGaAloD0MIwTi4dMzZA8CUhpRSlGgVSzJoFkdAqMZhXOnl4nV9lChoBmgJaA9DCEvNHmgF5hLAlIaUUpRoFUsyaBZHQKjGIuTRplB1fZQoaAZoCWgPQwjf+rDeqHULwJSGlFKUaBVLMmgWR0CoyKUe2d/bdX2UKGgGaAloD0MIMZqV7UOeEMCUhpRSlGgVSzJoFkdAqMhnu7YkFHV9lChoBmgJaA9DCAe2SrA4vA3AlIaUUpRoFUsyaBZHQKjIKLm6oVF1fZQoaAZoCWgPQwjoa5bLRkcBwJSGlFKUaBVLMmgWR0Cox+qf4AS4dX2UKGgGaAloD0MI/nvw2qXNDMCUhpRSlGgVSzJoFkdAqMpSbKA8S3V9lChoBmgJaA9DCMLDtG/ur/y/lIaUUpRoFUsyaBZHQKjKFQfp2U11fZQoaAZoCWgPQwiE8dO4N88YwJSGlFKUaBVLMmgWR0CoydWhh6SldX2UKGgGaAloD0MIWTZzSGphEcCUhpRSlGgVSzJoFkdAqMmXmcOLBXV9lChoBmgJaA9DCNhjIqXZvP2/lIaUUpRoFUsyaBZHQKjLkETxoZh1fZQoaAZoCWgPQwjZlgFnKdkPwJSGlFKUaBVLMmgWR0Coy1JKBd2QdX2UKGgGaAloD0MI94+F6BD4DsCUhpRSlGgVSzJoFkdAqMsSWVu76HV9lChoBmgJaA9DCEwYzcr2wQ7AlIaUUpRoFUsyaBZHQKjK01E3Kjl1fZQoaAZoCWgPQwgOh6WBH5X6v5SGlFKUaBVLMmgWR0CozJy8zyjIdX2UKGgGaAloD0MIsaiI00nmFMCUhpRSlGgVSzJoFkdAqMxePgeijHV9lChoBmgJaA9DCBVypZ4F4RfAlIaUUpRoFUsyaBZHQKjMHoEjgQ91fZQoaAZoCWgPQwjEP2zp0fQHwJSGlFKUaBVLMmgWR0Coy995IH1OdX2UKGgGaAloD0MIQxzr4ja6CcCUhpRSlGgVSzJoFkdAqM2cQRPGhnV9lChoBmgJaA9DCIpbBTHQVRbAlIaUUpRoFUsyaBZHQKjNXbaAWi11fZQoaAZoCWgPQwiy9KEL6psFwJSGlFKUaBVLMmgWR0CozR4gA6uGdX2UKGgGaAloD0MIXcDLDBtlA8CUhpRSlGgVSzJoFkdAqMzfX/YJ3XV9lChoBmgJaA9DCPCGNCpwMgXAlIaUUpRoFUsyaBZHQKjOt4k/r0J1fZQoaAZoCWgPQwiGIXL6ev4AwJSGlFKUaBVLMmgWR0CoznkJjUd8dX2UKGgGaAloD0MI4IPXLm34AsCUhpRSlGgVSzJoFkdAqM45SLqD9XV9lChoBmgJaA9DCHEbDeAtUADAlIaUUpRoFUsyaBZHQKjN+k2xY7t1fZQoaAZoCWgPQwizsRLzrPQZwJSGlFKUaBVLMmgWR0Coz8mZeAuqdX2UKGgGaAloD0MIjpJX5xgwFMCUhpRSlGgVSzJoFkdAqM+LPldTpHV9lChoBmgJaA9DCGnlXmBWiBfAlIaUUpRoFUsyaBZHQKjPS4FzMid1fZQoaAZoCWgPQwgwgVt381QPwJSGlFKUaBVLMmgWR0Cozwx+z+m4dX2UKGgGaAloD0MIm3PwTGiSDsCUhpRSlGgVSzJoFkdAqNDUIw/PgXV9lChoBmgJaA9DCOIGfH4YwQfAlIaUUpRoFUsyaBZHQKjQlch1Tzd1fZQoaAZoCWgPQwjlXmBWKJINwJSGlFKUaBVLMmgWR0Co0FX7DVH4dX2UKGgGaAloD0MIAoOkT6sIB8CUhpRSlGgVSzJoFkdAqNAW5z5oG3V9lChoBmgJaA9DCJ4lyAiosAXAlIaUUpRoFUsyaBZHQKjR5YVZcLV1fZQoaAZoCWgPQwh8tDhjmDMNwJSGlFKUaBVLMmgWR0Co0aeIl+mWdX2UKGgGaAloD0MIaeOItfhUFMCUhpRSlGgVSzJoFkdAqNFn8qFyrHV9lChoBmgJaA9DCC9NEeD0rgvAlIaUUpRoFUsyaBZHQKjRKSAYpDx1fZQoaAZoCWgPQwj35GGh1jQLwJSGlFKUaBVLMmgWR0Co0uCdat9ydX2UKGgGaAloD0MItp+M8WGWAsCUhpRSlGgVSzJoFkdAqNKiYZ2pynV9lChoBmgJaA9DCDwW26SiUQLAlIaUUpRoFUsyaBZHQKjSYoH9m6J1fZQoaAZoCWgPQwhKsg5HV6kLwJSGlFKUaBVLMmgWR0Co0iN83MpxdX2UKGgGaAloD0MI2lcepKfoE8CUhpRSlGgVSzJoFkdAqNQHZkCmuXV9lChoBmgJaA9DCMCSq1j85gTAlIaUUpRoFUsyaBZHQKjTyTQE6kt1fZQoaAZoCWgPQwhbKJmc2pkUwJSGlFKUaBVLMmgWR0Co04ltbcGkdX2UKGgGaAloD0MIBP7w89+DEMCUhpRSlGgVSzJoFkdAqNNKpo9LYnV9lChoBmgJaA9DCH1Z2qm5XAnAlIaUUpRoFUsyaBZHQKjVH9Hc1wZ1fZQoaAZoCWgPQwgmcOtungoKwJSGlFKUaBVLMmgWR0Co1OIvalDXdX2UKGgGaAloD0MI6peIt84/CsCUhpRSlGgVSzJoFkdAqNSitknTiXV9lChoBmgJaA9DCIVE2safSA3AlIaUUpRoFUsyaBZHQKjUY8cMmWt1fZQoaAZoCWgPQwixGktYGwMFwJSGlFKUaBVLMmgWR0Co1jXUQTVUdX2UKGgGaAloD0MIATJ07KDyDsCUhpRSlGgVSzJoFkdAqNX3i97F9HV9lChoBmgJaA9DCM5V8xyRrwbAlIaUUpRoFUsyaBZHQKjVuDYh+v11fZQoaAZoCWgPQwjkMJi/QmYVwJSGlFKUaBVLMmgWR0Co1XlC9h7WdX2UKGgGaAloD0MILEgzFk2XEsCUhpRSlGgVSzJoFkdAqNdR9AooeHV9lChoBmgJaA9DCKVrJt9s8xTAlIaUUpRoFUsyaBZHQKjXFGo73f11fZQoaAZoCWgPQwixa3u7JTkFwJSGlFKUaBVLMmgWR0Co1tUjs2NvdX2UKGgGaAloD0MIYyZRL/gUA8CUhpRSlGgVSzJoFkdAqNaXZCfHxXV9lChoBmgJaA9DCBRf7SjOIRDAlIaUUpRoFUsyaBZHQKjYWiliz9l1fZQoaAZoCWgPQwiS6dDpeWcTwJSGlFKUaBVLMmgWR0Co2BvZh8YydX2UKGgGaAloD0MI170ViQl6FcCUhpRSlGgVSzJoFkdAqNfcEovzv3V9lChoBmgJaA9DCLWlDvJ6UATAlIaUUpRoFUsyaBZHQKjXnUVi4KB1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce544c8d3aa1e0da47f47812f969e7ffec8066b916761d7bca5270e92f44d82f
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba6631a15e952ef71f3db66df186cf7c1d45f3bd2d3008506428e6fde80d1365
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2e8d43fee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2e8d4b7b40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678141768324311376, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+orcPrKAOLyTwBc/+orcPrKAOLyTwBc/+orcPrKAOLyTwBc/+orcPrKAOLyTwBc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAOC2Uv0luOT0XBbC/ApxrPzNVBz/YJ1S/OAyBPtzDVbxMK92//6PVP50OtL+gVEI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD6itw+soA4vJPAFz8cJAA8CEj1umzcFzv6itw+soA4vJPAFz8cJAA8CEj1umzcFzv6itw+soA4vJPAFz8cJAA8CEj1umzcFzv6itw+soA4vJPAFz8cJAA8CEj1umzcFzuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4307478 -0.01126115 0.5927822 ]\n [ 0.4307478 -0.01126115 0.5927822 ]\n [ 0.4307478 -0.01126115 0.5927822 ]\n [ 0.4307478 -0.01126115 0.5927822 ]]", "desired_goal": "[[-1.15763 0.04527119 -1.3751553 ]\n [ 0.92034924 0.5286438 -0.82873297]\n [ 0.25204635 -0.01304718 -1.7278838 ]\n [ 1.6690673 -1.406696 0.7591038 ]]", "observation": "[[ 0.4307478 -0.01126115 0.5927822 0.00782111 -0.00187135 0.00231722]\n [ 0.4307478 -0.01126115 0.5927822 0.00782111 -0.00187135 0.00231722]\n [ 0.4307478 -0.01126115 0.5927822 0.00782111 -0.00187135 0.00231722]\n [ 0.4307478 -0.01126115 0.5927822 0.00782111 -0.00187135 0.00231722]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAy0EAPksItT032mc+ZS3Mu/uCFL7kg4w+gI+JvUr+4r3kznY93BD9vHf2370GvpQ6lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12525098 0.08839472 0.22641836]\n [-0.006231 -0.1450309 0.27444375]\n [-0.06716824 -0.11083658 0.0602559 ]\n [-0.03089183 -0.10935681 0.00113481]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVp3VAnuM/b+UhpRSlIwBbJRLMowBdJRHQKi6mFrVOKx1fZQoaAZoCWgPQwieI/JdSp0GwJSGlFKUaBVLMmgWR0Coulou5BkadX2UKGgGaAloD0MIYYvdPqvsEsCUhpRSlGgVSzJoFkdAqLoaekHlfnV9lChoBmgJaA9DCN0jm6vm+RPAlIaUUpRoFUsyaBZHQKi524//vOR1fZQoaAZoCWgPQwgQejarPvcIwJSGlFKUaBVLMmgWR0Cou7tSIgvEdX2UKGgGaAloD0MIf4l46/w7D8CUhpRSlGgVSzJoFkdAqLt8/OdGzHV9lChoBmgJaA9DCAWnPpC8UwLAlIaUUpRoFUsyaBZHQKi7PUMoc711fZQoaAZoCWgPQwhh+l5DcFwQwJSGlFKUaBVLMmgWR0Couv5w4sErdX2UKGgGaAloD0MIZJY9CWzOCcCUhpRSlGgVSzJoFkdAqLzOqFRHgHV9lChoBmgJaA9DCAZlGk0uJg3AlIaUUpRoFUsyaBZHQKi8kE9Mbm51fZQoaAZoCWgPQwhM4qyImigOwJSGlFKUaBVLMmgWR0CovFDd56dEdX2UKGgGaAloD0MILC6Oyk3UDcCUhpRSlGgVSzJoFkdAqLwSWeHzpXV9lChoBmgJaA9DCPinVImydwbAlIaUUpRoFUsyaBZHQKi968Gs3hp1fZQoaAZoCWgPQwiUSnhCrz/8v5SGlFKUaBVLMmgWR0Cova3VLBbfdX2UKGgGaAloD0MI7dRcbjDUAsCUhpRSlGgVSzJoFkdAqL1t/QSi/XV9lChoBmgJaA9DCC++aI8XUgjAlIaUUpRoFUsyaBZHQKi9L0cOskp1fZQoaAZoCWgPQwgWwJSBA/oKwJSGlFKUaBVLMmgWR0Covwrmhdt3dX2UKGgGaAloD0MIjZlEveAzE8CUhpRSlGgVSzJoFkdAqL7MidJ8OXV9lChoBmgJaA9DCO2BVmDIygrAlIaUUpRoFUsyaBZHQKi+jMURFql1fZQoaAZoCWgPQwgX1SKimLwLwJSGlFKUaBVLMmgWR0Covk37Lt/ndX2UKGgGaAloD0MIXHFxVG7CEsCUhpRSlGgVSzJoFkdAqMAdKXfIjnV9lChoBmgJaA9DCDboS29/Lva/lIaUUpRoFUsyaBZHQKi/3y/9Hc11fZQoaAZoCWgPQwj3BInt7mEQwJSGlFKUaBVLMmgWR0Cov59IoVmBdX2UKGgGaAloD0MIObnfoSiQDcCUhpRSlGgVSzJoFkdAqL9gb+98JHV9lChoBmgJaA9DCBNm2v6V1f+/lIaUUpRoFUsyaBZHQKjBzy3kPtl1fZQoaAZoCWgPQwitUQ/R6K4LwJSGlFKUaBVLMmgWR0CowZFfqoqDdX2UKGgGaAloD0MIelImNbQhDMCUhpRSlGgVSzJoFkdAqMFSFh5PdnV9lChoBmgJaA9DCGpOXmQCfv6/lIaUUpRoFUsyaBZHQKjBE78Nx2l1fZQoaAZoCWgPQwgB4Niz5/ILwJSGlFKUaBVLMmgWR0Cow3syi22HdX2UKGgGaAloD0MI4nK8AtEzCMCUhpRSlGgVSzJoFkdAqMM9ZmqYJHV9lChoBmgJaA9DCINMMnIWdhLAlIaUUpRoFUsyaBZHQKjC/pNbkfd1fZQoaAZoCWgPQwgGu2HboswVwJSGlFKUaBVLMmgWR0CowsDDKoycdX2UKGgGaAloD0MIRE5fz9dsBMCUhpRSlGgVSzJoFkdAqMU2HnEET3V9lChoBmgJaA9DCLfvUX+9QgrAlIaUUpRoFUsyaBZHQKjE+EjgQ6J1fZQoaAZoCWgPQwiie9Y1Wg4EwJSGlFKUaBVLMmgWR0CoxLmjj7yhdX2UKGgGaAloD0MIIZBLHHmgAcCUhpRSlGgVSzJoFkdAqMR7wtrbg3V9lChoBmgJaA9DCIKq0asBqgnAlIaUUpRoFUsyaBZHQKjG3jm0VrR1fZQoaAZoCWgPQwhRvMrapsgQwJSGlFKUaBVLMmgWR0CoxqBNdqtYdX2UKGgGaAloD0MIwTi4dMzZA8CUhpRSlGgVSzJoFkdAqMZhXOnl4nV9lChoBmgJaA9DCEvNHmgF5hLAlIaUUpRoFUsyaBZHQKjGIuTRplB1fZQoaAZoCWgPQwjf+rDeqHULwJSGlFKUaBVLMmgWR0CoyKUe2d/bdX2UKGgGaAloD0MIMZqV7UOeEMCUhpRSlGgVSzJoFkdAqMhnu7YkFHV9lChoBmgJaA9DCAe2SrA4vA3AlIaUUpRoFUsyaBZHQKjIKLm6oVF1fZQoaAZoCWgPQwjoa5bLRkcBwJSGlFKUaBVLMmgWR0Cox+qf4AS4dX2UKGgGaAloD0MI/nvw2qXNDMCUhpRSlGgVSzJoFkdAqMpSbKA8S3V9lChoBmgJaA9DCMLDtG/ur/y/lIaUUpRoFUsyaBZHQKjKFQfp2U11fZQoaAZoCWgPQwiE8dO4N88YwJSGlFKUaBVLMmgWR0CoydWhh6SldX2UKGgGaAloD0MIWTZzSGphEcCUhpRSlGgVSzJoFkdAqMmXmcOLBXV9lChoBmgJaA9DCNhjIqXZvP2/lIaUUpRoFUsyaBZHQKjLkETxoZh1fZQoaAZoCWgPQwjZlgFnKdkPwJSGlFKUaBVLMmgWR0Coy1JKBd2QdX2UKGgGaAloD0MI94+F6BD4DsCUhpRSlGgVSzJoFkdAqMsSWVu76HV9lChoBmgJaA9DCEwYzcr2wQ7AlIaUUpRoFUsyaBZHQKjK01E3Kjl1fZQoaAZoCWgPQwgOh6WBH5X6v5SGlFKUaBVLMmgWR0CozJy8zyjIdX2UKGgGaAloD0MIsaiI00nmFMCUhpRSlGgVSzJoFkdAqMxePgeijHV9lChoBmgJaA9DCBVypZ4F4RfAlIaUUpRoFUsyaBZHQKjMHoEjgQ91fZQoaAZoCWgPQwjEP2zp0fQHwJSGlFKUaBVLMmgWR0Coy995IH1OdX2UKGgGaAloD0MIQxzr4ja6CcCUhpRSlGgVSzJoFkdAqM2cQRPGhnV9lChoBmgJaA9DCIpbBTHQVRbAlIaUUpRoFUsyaBZHQKjNXbaAWi11fZQoaAZoCWgPQwiy9KEL6psFwJSGlFKUaBVLMmgWR0CozR4gA6uGdX2UKGgGaAloD0MIXcDLDBtlA8CUhpRSlGgVSzJoFkdAqMzfX/YJ3XV9lChoBmgJaA9DCPCGNCpwMgXAlIaUUpRoFUsyaBZHQKjOt4k/r0J1fZQoaAZoCWgPQwiGIXL6ev4AwJSGlFKUaBVLMmgWR0CoznkJjUd8dX2UKGgGaAloD0MI4IPXLm34AsCUhpRSlGgVSzJoFkdAqM45SLqD9XV9lChoBmgJaA9DCHEbDeAtUADAlIaUUpRoFUsyaBZHQKjN+k2xY7t1fZQoaAZoCWgPQwizsRLzrPQZwJSGlFKUaBVLMmgWR0Coz8mZeAuqdX2UKGgGaAloD0MIjpJX5xgwFMCUhpRSlGgVSzJoFkdAqM+LPldTpHV9lChoBmgJaA9DCGnlXmBWiBfAlIaUUpRoFUsyaBZHQKjPS4FzMid1fZQoaAZoCWgPQwgwgVt381QPwJSGlFKUaBVLMmgWR0Cozwx+z+m4dX2UKGgGaAloD0MIm3PwTGiSDsCUhpRSlGgVSzJoFkdAqNDUIw/PgXV9lChoBmgJaA9DCOIGfH4YwQfAlIaUUpRoFUsyaBZHQKjQlch1Tzd1fZQoaAZoCWgPQwjlXmBWKJINwJSGlFKUaBVLMmgWR0Co0FX7DVH4dX2UKGgGaAloD0MIAoOkT6sIB8CUhpRSlGgVSzJoFkdAqNAW5z5oG3V9lChoBmgJaA9DCJ4lyAiosAXAlIaUUpRoFUsyaBZHQKjR5YVZcLV1fZQoaAZoCWgPQwh8tDhjmDMNwJSGlFKUaBVLMmgWR0Co0aeIl+mWdX2UKGgGaAloD0MIaeOItfhUFMCUhpRSlGgVSzJoFkdAqNFn8qFyrHV9lChoBmgJaA9DCC9NEeD0rgvAlIaUUpRoFUsyaBZHQKjRKSAYpDx1fZQoaAZoCWgPQwj35GGh1jQLwJSGlFKUaBVLMmgWR0Co0uCdat9ydX2UKGgGaAloD0MItp+M8WGWAsCUhpRSlGgVSzJoFkdAqNKiYZ2pynV9lChoBmgJaA9DCDwW26SiUQLAlIaUUpRoFUsyaBZHQKjSYoH9m6J1fZQoaAZoCWgPQwhKsg5HV6kLwJSGlFKUaBVLMmgWR0Co0iN83MpxdX2UKGgGaAloD0MI2lcepKfoE8CUhpRSlGgVSzJoFkdAqNQHZkCmuXV9lChoBmgJaA9DCMCSq1j85gTAlIaUUpRoFUsyaBZHQKjTyTQE6kt1fZQoaAZoCWgPQwhbKJmc2pkUwJSGlFKUaBVLMmgWR0Co04ltbcGkdX2UKGgGaAloD0MIBP7w89+DEMCUhpRSlGgVSzJoFkdAqNNKpo9LYnV9lChoBmgJaA9DCH1Z2qm5XAnAlIaUUpRoFUsyaBZHQKjVH9Hc1wZ1fZQoaAZoCWgPQwgmcOtungoKwJSGlFKUaBVLMmgWR0Co1OIvalDXdX2UKGgGaAloD0MI6peIt84/CsCUhpRSlGgVSzJoFkdAqNSitknTiXV9lChoBmgJaA9DCIVE2safSA3AlIaUUpRoFUsyaBZHQKjUY8cMmWt1fZQoaAZoCWgPQwixGktYGwMFwJSGlFKUaBVLMmgWR0Co1jXUQTVUdX2UKGgGaAloD0MIATJ07KDyDsCUhpRSlGgVSzJoFkdAqNX3i97F9HV9lChoBmgJaA9DCM5V8xyRrwbAlIaUUpRoFUsyaBZHQKjVuDYh+v11fZQoaAZoCWgPQwjkMJi/QmYVwJSGlFKUaBVLMmgWR0Co1XlC9h7WdX2UKGgGaAloD0MILEgzFk2XEsCUhpRSlGgVSzJoFkdAqNdR9AooeHV9lChoBmgJaA9DCKVrJt9s8xTAlIaUUpRoFUsyaBZHQKjXFGo73f11fZQoaAZoCWgPQwixa3u7JTkFwJSGlFKUaBVLMmgWR0Co1tUjs2NvdX2UKGgGaAloD0MIYyZRL/gUA8CUhpRSlGgVSzJoFkdAqNaXZCfHxXV9lChoBmgJaA9DCBRf7SjOIRDAlIaUUpRoFUsyaBZHQKjYWiliz9l1fZQoaAZoCWgPQwiS6dDpeWcTwJSGlFKUaBVLMmgWR0Co2BvZh8YydX2UKGgGaAloD0MI170ViQl6FcCUhpRSlGgVSzJoFkdAqNfcEovzv3V9lChoBmgJaA9DCLWlDvJ6UATAlIaUUpRoFUsyaBZHQKjXnUVi4KB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (760 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.8511611547321083, "std_reward": 1.1628644862327568, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-06T23:24:46.203620"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:302fbefdeeebbd53d934839327944eea73a4e98d68a7521e7dc1f1fd223fb539
3
+ size 3056