init model
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -235.94 +/- 97.45
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f39538523b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3953852440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f39538524d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3953852560>", "_build": "<function ActorCriticPolicy._build at 0x7f39538525f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3953852680>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3953852710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f39538527a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3953852830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f39538528c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3953852950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f39538529e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3953846a40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 100352, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688021762260279513, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAABCktT5SK827buFVPTQGg72P6Ae9c8+7PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFW6XjlxOtaMAWyUS+qMAXSUR0BbgsiwB5oodX2UKGgGR0Akg0UoKD02aAdLr2gIR0BbriXdCVrzdX2UKGgGR8BVfeJ53TuwaAdLjmgIR0BbvweA/cFhdX2UKGgGR8BXqWt2cJ+laAdL3WgIR0Bb3JqqOtGNdX2UKGgGR8BLTrBsQ/X5aAdLn2gIR0Bb8WRmseXBdX2UKGgGR8BQdhsl9jPOaAdL4GgIR0BcD1Da4+bFdX2UKGgGR8BEy5F5OafBaAdLgGgIR0BcIB/Aj6eodX2UKGgGR8BP76o2n88+aAdL2WgIR0BcVh+z+m3wdX2UKGgGR0BOJEB8x9G7aAdN6ANoCEdAXMIlme18cHV9lChoBkfAVErnEETxomgHS55oCEdAXM+gOBlMAXV9lChoBkfAS6zvZyuIRGgHS49oCEdAXNuyY5T6znV9lChoBkdAPTspG4I8hmgHS3NoCEdAXOWx/ustCnV9lChoBkfARjEJD3M6imgHS6JoCEdAXPOCPIXCTHV9lChoBkfAUqCttALRbGgHS5NoCEdAXQAP5HmRvHV9lChoBkfAWHsUrTYukGgHTVsBaAhHQF0vw6ySmqJ1fZQoaAZHwD58cENe+mFoB0uvaAhHQF0+0zTF2mp1fZQoaAZHwFcrtXxOLzhoB0t8aAhHQF1JcD8tPHl1fZQoaAZHQGGwDArQPZtoB03oA2gIR0Bdsms/6frbdX2UKGgGR0BHOpzT4L1FaAdLgWgIR0BdvaxPfsNUdX2UKGgGR0Ao9DEWIoE0aAdLt2gIR0BdzTriVB2PdX2UKGgGR0A9qxtHhCMQaAdLzWgIR0Bd3oSpR4yHdX2UKGgGR8BHzwTEit7saAdNpQJoCEdAXitImPYFq3V9lChoBkfAR7YumJm/WWgHS+RoCEdAXj8d0aIeo3V9lChoBkfAQxfGGVRk3GgHS31oCEdAXknSeAd4mnV9lChoBkdAKJlPacqe9WgHS7poCEdAXmq0NSZSenV9lChoBkfAF0lHjIaLoGgHS7xoCEdAXntWmxdIG3V9lChoBkdANpgq7ROUMWgHS/loCEdAXpBz5oGpuXV9lChoBkdAO+RtHhCMP2gHS6JoCEdAXp4lLOAy23V9lChoBkfARYqcslLOA2gHS3ZoCEdAXqhschkiEHV9lChoBkdAL+3pOerdWWgHTegDaAhHQF8hmcvugHx1fZQoaAZHwBPAiFCb+cZoB0u3aAhHQF83D8Lront1fZQoaAZHwBBr655JK8NoB0vJaAhHQF9nkupS75F1fZQoaAZHQE2UjGkvboNoB03oA2gIR0Bf/z0UXYUWdX2UKGgGR0BLhPrfLs8gaAdN6ANoCEdAYDQLOzIFNnV9lChoBkfAJvEMTewcHWgHTRMBaAhHQGBAcHv+fiB1fZQoaAZHwE1uMfigkC5oB0u+aAhHQGBIgWrOqvN1fZQoaAZHQFMMG5c1O0toB03oA2gIR0BgfUmjTKDDdX2UKGgGR8BKwTIV/MGHaAdL0GgIR0BghlJSR8txdX2UKGgGR8BgjUwco6S1aAdNTgFoCEdAYJ1sCT2WZHV9lChoBkfAYg+ymALApWgHS6JoCEdAYKR/4Irvs3V9lChoBkdASdhQvYe1bGgHTegDaAhHQGDY/ozN2Tx1fZQoaAZHQEIlNahYeT5oB03oA2gIR0BhDLTx5LRKdX2UKGgGR8BLjpVCHARDaAdL0WgIR0BhFcXtShrWdX2UKGgGR8At4b2Dg62faAdLvGgIR0BhHcsYl6Z6dX2UKGgGR0BV9v6be/HpaAdN6ANoCEdAYVnied07sHV9lChoBkdAAvkbxVhkRWgHTQgBaAhHQGFpLDIikft1fZQoaAZHQFSLyvs7dSFoB0uWaAhHQGFyCONo8IR1fZQoaAZHwFCZmCiAUcpoB0u3aAhHQGGKsBhhH9Z1fZQoaAZHQCTnO8kD6nBoB03oA2gIR0Bh0gJqqOtGdX2UKGgGR0A0kdXko4MnaAdLqWgIR0Bh2aRlpXZHdX2UKGgGR8Azq+G47Rv4aAdN6ANoCEdAYg1LFn7HhnV9lChoBkdAOk9Aood+5WgHS9FoCEdAYhY9eQdS23V9lChoBkfAQlKp3os7MmgHS81oCEdAYh8Kl54W13V9lChoBkfAQ96jesPrfWgHS9xoCEdAYiiJaaCtinV9lChoBkfAS92fseGO/GgHS9doCEdAYjpw+dK/VXV9lChoBkfASH6YE4ecQWgHS7NoCEdAYkIK8+Roy3V9lChoBkfAMz/smfGuLmgHS69oCEdAYkmYgJTl1nV9lChoBke/tlyR0U47zWgHS6JoCEdAYlBr56+nInV9lChoBkdARzbbvgFX72gHTegDaAhHQGKEGe18b711fZQoaAZHwEFRY9xIatNoB0vLaAhHQGKM7IcR15l1fZQoaAZHQDaHvUjLSu1oB03oA2gIR0BiwVdTo+wDdX2UKGgGR8BA03Q2MsH0aAdL7GgIR0Bi1P+hoM8YdX2UKGgGR0BCJzmW+oLoaAdLtWgIR0Bi3OJ3xFy8dX2UKGgGR0A9sCMxXXAeaAdN6ANoCEdAYxY0uUUwjHV9lChoBkfACObS7Xg9/2gHS7xoCEdAYyDczImw7nV9lChoBkdANjsXenAIp2gHS4ZoCEdAYyhbgTAWSHV9lChoBkdAQezKA8Swn2gHS6FoCEdAYzF6Y3Ns33V9lChoBkdAUhTRPXTVlWgHTegDaAhHQGN94cvM8ox1fZQoaAZHwEcqig00m+loB0u+aAhHQGOKBzeXRgJ1fZQoaAZHwGsRTZHuqm1oB02gA2gIR0Bju+4oZydXdX2UKGgGR8AsPaFEiMYNaAdL2WgIR0BjxS99MK1HdX2UKGgGR0BS9zPSlWOqaAdN6ANoCEdAY/oimEXcg3V9lChoBkdAWRchGH58B2gHTegDaAhHQGQvgeRxLkF1fZQoaAZHQCnuxUvPC2toB03oA2gIR0BkZIbADaGpdX2UKGgGR8BC26A4GUwBaAdLlmgIR0BkavKZDzAfdX2UKGgGR0BE74/FBIFvaAdL0GgIR0BkfNnEl3QldX2UKGgGR8A9r4Oc2BJ7aAdLymgIR0BkhakwevIPdX2UKGgGR8Bewxc7hegMaAdNJgJoCEdAZJ4aCtihFnV9lChoBkdAQVZ+SbH6uWgHS6doCEdAZK3YbKifx3V9lChoBkfAPI6rR0EHMWgHS4doCEdAZLOgvlEJB3V9lChoBkfARJUaQ3gk1WgHS2doCEdAZLhIZIg/1XV9lChoBkc/xGUnogV45mgHS45oCEdAZL5m6oVEeHV9lChoBkdARJPFzdUKiWgHS6xoCEdAZMWnjyWiUXV9lChoBkdAWOltaY/mkmgHTegDaAhHQGUJwDmr8zh1fZQoaAZHwDiwXm/336BoB0vEaAhHQGUWWhqTKT11fZQoaAZHQE63j6vaDf5oB03oA2gIR0BlYCuGKyfMdX2UKGgGR0AX5yq+8Gs4aAdLq2gIR0BlZ2Yx+KCQdX2UKGgGR0BT244ACGN8aAdN6ANoCEdAZZyaBqbjLnV9lChoBkdAOgSy+pOvdWgHS7BoCEdAZa0rkKeCkHV9lChoBkdANcfkiliz9mgHS6doCEdAZbRNATqSo3V9lChoBke/wC6pYLb5/WgHS7RoCEdAZbw8UVSGanV9lChoBkdAVBf6KtPpIWgHTegDaAhHQGXyc2aUiY91fZQoaAZHwCoevjfek59oB0uwaAhHQGX6If0VafV1fZQoaAZHwEbQW3Sa3JBoB0u7aAhHQGYCjnFHavl1fZQoaAZHQEKlOjZcs19oB0vxaAhHQGYM2w3YL9d1fZQoaAZHwBGOCK77Kq5oB01HAWgIR0BmI7H2h7E6dX2UKGgGR0BAm1AJLM9saAdN6ANoCEdAZlg7aIvalHV9lChoBkdAVFRwyZa3Z2gHTegDaAhHQGaMgLZzxPR1fZQoaAZHwFJVvRZ2ZApoB00hAWgIR0BmmjI91U2ldX2UKGgGR0BVEPlp48lpaAdN6ANoCEdAZuEm8/UvwnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 392, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d62971e3de0c9ca954e0470c4b9d35062f2ce631c2ad587a6f22fbaadeecfb9d
|
3 |
+
size 146009
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f39538523b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3953852440>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f39538524d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3953852560>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f39538525f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3953852680>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3953852710>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f39538527a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3953852830>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f39538528c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3953852950>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f39538529e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f3953846a40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 100352,
|
25 |
+
"_total_timesteps": 100000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1688021762260279513,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAABCktT5SK827buFVPTQGg72P6Ae9c8+7PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVAgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFW6XjlxOtaMAWyUS+qMAXSUR0BbgsiwB5oodX2UKGgGR0Akg0UoKD02aAdLr2gIR0BbriXdCVrzdX2UKGgGR8BVfeJ53TuwaAdLjmgIR0BbvweA/cFhdX2UKGgGR8BXqWt2cJ+laAdL3WgIR0Bb3JqqOtGNdX2UKGgGR8BLTrBsQ/X5aAdLn2gIR0Bb8WRmseXBdX2UKGgGR8BQdhsl9jPOaAdL4GgIR0BcD1Da4+bFdX2UKGgGR8BEy5F5OafBaAdLgGgIR0BcIB/Aj6eodX2UKGgGR8BP76o2n88+aAdL2WgIR0BcVh+z+m3wdX2UKGgGR0BOJEB8x9G7aAdN6ANoCEdAXMIlme18cHV9lChoBkfAVErnEETxomgHS55oCEdAXM+gOBlMAXV9lChoBkfAS6zvZyuIRGgHS49oCEdAXNuyY5T6znV9lChoBkdAPTspG4I8hmgHS3NoCEdAXOWx/ustCnV9lChoBkfARjEJD3M6imgHS6JoCEdAXPOCPIXCTHV9lChoBkfAUqCttALRbGgHS5NoCEdAXQAP5HmRvHV9lChoBkfAWHsUrTYukGgHTVsBaAhHQF0vw6ySmqJ1fZQoaAZHwD58cENe+mFoB0uvaAhHQF0+0zTF2mp1fZQoaAZHwFcrtXxOLzhoB0t8aAhHQF1JcD8tPHl1fZQoaAZHQGGwDArQPZtoB03oA2gIR0Bdsms/6frbdX2UKGgGR0BHOpzT4L1FaAdLgWgIR0BdvaxPfsNUdX2UKGgGR0Ao9DEWIoE0aAdLt2gIR0BdzTriVB2PdX2UKGgGR0A9qxtHhCMQaAdLzWgIR0Bd3oSpR4yHdX2UKGgGR8BHzwTEit7saAdNpQJoCEdAXitImPYFq3V9lChoBkfAR7YumJm/WWgHS+RoCEdAXj8d0aIeo3V9lChoBkfAQxfGGVRk3GgHS31oCEdAXknSeAd4mnV9lChoBkdAKJlPacqe9WgHS7poCEdAXmq0NSZSenV9lChoBkfAF0lHjIaLoGgHS7xoCEdAXntWmxdIG3V9lChoBkdANpgq7ROUMWgHS/loCEdAXpBz5oGpuXV9lChoBkdAO+RtHhCMP2gHS6JoCEdAXp4lLOAy23V9lChoBkfARYqcslLOA2gHS3ZoCEdAXqhschkiEHV9lChoBkdAL+3pOerdWWgHTegDaAhHQF8hmcvugHx1fZQoaAZHwBPAiFCb+cZoB0u3aAhHQF83D8Lront1fZQoaAZHwBBr655JK8NoB0vJaAhHQF9nkupS75F1fZQoaAZHQE2UjGkvboNoB03oA2gIR0Bf/z0UXYUWdX2UKGgGR0BLhPrfLs8gaAdN6ANoCEdAYDQLOzIFNnV9lChoBkfAJvEMTewcHWgHTRMBaAhHQGBAcHv+fiB1fZQoaAZHwE1uMfigkC5oB0u+aAhHQGBIgWrOqvN1fZQoaAZHQFMMG5c1O0toB03oA2gIR0BgfUmjTKDDdX2UKGgGR8BKwTIV/MGHaAdL0GgIR0BghlJSR8txdX2UKGgGR8BgjUwco6S1aAdNTgFoCEdAYJ1sCT2WZHV9lChoBkfAYg+ymALApWgHS6JoCEdAYKR/4Irvs3V9lChoBkdASdhQvYe1bGgHTegDaAhHQGDY/ozN2Tx1fZQoaAZHQEIlNahYeT5oB03oA2gIR0BhDLTx5LRKdX2UKGgGR8BLjpVCHARDaAdL0WgIR0BhFcXtShrWdX2UKGgGR8At4b2Dg62faAdLvGgIR0BhHcsYl6Z6dX2UKGgGR0BV9v6be/HpaAdN6ANoCEdAYVnied07sHV9lChoBkdAAvkbxVhkRWgHTQgBaAhHQGFpLDIikft1fZQoaAZHQFSLyvs7dSFoB0uWaAhHQGFyCONo8IR1fZQoaAZHwFCZmCiAUcpoB0u3aAhHQGGKsBhhH9Z1fZQoaAZHQCTnO8kD6nBoB03oA2gIR0Bh0gJqqOtGdX2UKGgGR0A0kdXko4MnaAdLqWgIR0Bh2aRlpXZHdX2UKGgGR8Azq+G47Rv4aAdN6ANoCEdAYg1LFn7HhnV9lChoBkdAOk9Aood+5WgHS9FoCEdAYhY9eQdS23V9lChoBkfAQlKp3os7MmgHS81oCEdAYh8Kl54W13V9lChoBkfAQ96jesPrfWgHS9xoCEdAYiiJaaCtinV9lChoBkfAS92fseGO/GgHS9doCEdAYjpw+dK/VXV9lChoBkfASH6YE4ecQWgHS7NoCEdAYkIK8+Roy3V9lChoBkfAMz/smfGuLmgHS69oCEdAYkmYgJTl1nV9lChoBke/tlyR0U47zWgHS6JoCEdAYlBr56+nInV9lChoBkdARzbbvgFX72gHTegDaAhHQGKEGe18b711fZQoaAZHwEFRY9xIatNoB0vLaAhHQGKM7IcR15l1fZQoaAZHQDaHvUjLSu1oB03oA2gIR0BiwVdTo+wDdX2UKGgGR8BA03Q2MsH0aAdL7GgIR0Bi1P+hoM8YdX2UKGgGR0BCJzmW+oLoaAdLtWgIR0Bi3OJ3xFy8dX2UKGgGR0A9sCMxXXAeaAdN6ANoCEdAYxY0uUUwjHV9lChoBkfACObS7Xg9/2gHS7xoCEdAYyDczImw7nV9lChoBkdANjsXenAIp2gHS4ZoCEdAYyhbgTAWSHV9lChoBkdAQezKA8Swn2gHS6FoCEdAYzF6Y3Ns33V9lChoBkdAUhTRPXTVlWgHTegDaAhHQGN94cvM8ox1fZQoaAZHwEcqig00m+loB0u+aAhHQGOKBzeXRgJ1fZQoaAZHwGsRTZHuqm1oB02gA2gIR0Bju+4oZydXdX2UKGgGR8AsPaFEiMYNaAdL2WgIR0BjxS99MK1HdX2UKGgGR0BS9zPSlWOqaAdN6ANoCEdAY/oimEXcg3V9lChoBkdAWRchGH58B2gHTegDaAhHQGQvgeRxLkF1fZQoaAZHQCnuxUvPC2toB03oA2gIR0BkZIbADaGpdX2UKGgGR8BC26A4GUwBaAdLlmgIR0BkavKZDzAfdX2UKGgGR0BE74/FBIFvaAdL0GgIR0BkfNnEl3QldX2UKGgGR8A9r4Oc2BJ7aAdLymgIR0BkhakwevIPdX2UKGgGR8Bewxc7hegMaAdNJgJoCEdAZJ4aCtihFnV9lChoBkdAQVZ+SbH6uWgHS6doCEdAZK3YbKifx3V9lChoBkfAPI6rR0EHMWgHS4doCEdAZLOgvlEJB3V9lChoBkfARJUaQ3gk1WgHS2doCEdAZLhIZIg/1XV9lChoBkc/xGUnogV45mgHS45oCEdAZL5m6oVEeHV9lChoBkdARJPFzdUKiWgHS6xoCEdAZMWnjyWiUXV9lChoBkdAWOltaY/mkmgHTegDaAhHQGUJwDmr8zh1fZQoaAZHwDiwXm/336BoB0vEaAhHQGUWWhqTKT11fZQoaAZHQE63j6vaDf5oB03oA2gIR0BlYCuGKyfMdX2UKGgGR0AX5yq+8Gs4aAdLq2gIR0BlZ2Yx+KCQdX2UKGgGR0BT244ACGN8aAdN6ANoCEdAZZyaBqbjLnV9lChoBkdAOgSy+pOvdWgHS7BoCEdAZa0rkKeCkHV9lChoBkdANcfkiliz9mgHS6doCEdAZbRNATqSo3V9lChoBke/wC6pYLb5/WgHS7RoCEdAZbw8UVSGanV9lChoBkdAVBf6KtPpIWgHTegDaAhHQGXyc2aUiY91fZQoaAZHwCoevjfek59oB0uwaAhHQGX6If0VafV1fZQoaAZHwEbQW3Sa3JBoB0u7aAhHQGYCjnFHavl1fZQoaAZHQEKlOjZcs19oB0vxaAhHQGYM2w3YL9d1fZQoaAZHwBGOCK77Kq5oB01HAWgIR0BmI7H2h7E6dX2UKGgGR0BAm1AJLM9saAdN6ANoCEdAZlg7aIvalHV9lChoBkdAVFRwyZa3Z2gHTegDaAhHQGaMgLZzxPR1fZQoaAZHwFJVvRZ2ZApoB00hAWgIR0BmmjI91U2ldX2UKGgGR0BVEPlp48lpaAdN6ANoCEdAZuEm8/UvwnVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 392,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4958a7f6c151b5bb084ce50f2c5f8fa8c53089c1d077344698b52e6baf88cdaf
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:891bea8499d8c6757fc3a9872a2f0840de4dc2568e56912e015ff67f4b55a3de
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (117 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -235.9401722, "std_reward": 97.44566284611018, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-29T07:14:23.599931"}
|