pseudo2010 commited on
Commit
7a14a02
1 Parent(s): ad7f38c

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.66 +/- 0.98
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2d3e1183715a82f7c6cf78ba95147a39e105e3372971af04e460343ccc65f58
3
+ size 108149
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2cf9a33ac0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f2cf9a1ecc0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1040000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1699395933720098827,
28
+ "learning_rate": 0.001,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1WWevkgiSr9piJ0+S864PltaYzzFIag/QvXzPz0Qzb/3OII/jEP2PpyxmD0ZdR4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvYQkvyXTs7/BxZW9XSOlvsDje7267ty9l77SPyl/v78w774/Sjo9PhunGT+5s7i/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADVZZ6+SCJKv2mInT6rnTW/+yvbPzqjnT9Lzrg+W1pjPMUhqD+AGUO/ZUesv5NVsDtC9fM/PRDNv/c4gj8nDjE+gBEuPNvw1j+MQ/Y+nLGYPRl1Hj8STZq/swepPaSO/7+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-0.30937067 -0.7895856 0.30768135]\n [ 0.3609489 0.01387652 1.3135306 ]\n [ 1.9059222 -1.602058 1.0173634 ]\n [ 0.4809841 0.07455751 0.61897427]]",
34
+ "desired_goal": "[[-0.6426504 -1.4048811 -0.07313109]\n [-0.32253543 -0.0614965 -0.10787721]\n [ 1.6464413 -1.4960681 1.4916744 ]\n [ 0.18479267 0.6002061 -1.4429847 ]]",
35
+ "observation": "[[-0.30937067 -0.7895856 0.30768135 -0.7094371 1.7122797 1.2315438 ]\n [ 0.3609489 0.01387652 1.3135306 -0.76210785 -1.3459288 0.00538129]\n [ 1.9059222 -1.602058 1.0173634 0.17290555 0.01062429 1.6792253 ]\n [ 0.4809841 0.07455751 0.61897427 -1.205477 0.08253422 -1.9965405 ]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA23mvvX/7Cj4U3C8+cWbGvcpmSb1LcxE81QsKvsd+Kj2is4E+CkMKPt8GbbwO1Cw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.08568164 0.135725 0.17173797]\n [-0.09687508 -0.04917029 0.00887759]\n [-0.13481076 0.04162481 0.2533236 ]\n [ 0.13502136 -0.01446697 0.16877767]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": -0.040000000000000036,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv+eKG+K0lZ6MAWyUSwaMAXSUR0CqTAjTjNpudX2UKGgGR7/P/DtPYWcjaAdLA2gIR0CqS1MmWt2cdX2UKGgGR7/J5v99+gDiaAdLA2gIR0CqS2CVSn+AdX2UKGgGR7/TV+qioKlYaAdLA2gIR0CqS23TmW+odX2UKGgGR7/z+NkvsZ5zaAdLCmgIR0CqS7EkKNQ1dX2UKGgGR7/0WFSKm8/VaAdLDGgIR0CqTD+LehwmdX2UKGgGR7/A0uUUwi7kaAdLAmgIR0CqTEhQ3xWldX2UKGgGR7/n5qVQhwERaAdLB2gIR0CqS9OM+/xldX2UKGgGR7/XcBltj0+UaAdLBGgIR0CqTFx6fJ3gdX2UKGgGR7/Yiliz9jwyaAdLBWgIR0CqS+lTNt65dX2UKGgGR8ARCwwCbMHKaAdLMWgIR0CqTGJ8OTaCdX2UKGgGR8ACifpUxVQzaAdLEWgIR0CqTLAC4jKQdX2UKGgGR7/g8/+sHSncaAdLBmgIR0CqTH/hl18tdX2UKGgGR7/dP/rB0p3HaAdLBWgIR0CqTMfLcKw7dX2UKGgGR7/gznzQNTcZaAdLBWgIR0CqTJZdGAkLdX2UKGgGR7/iOE/SpiqiaAdLBmgIR0CqTLLupjtpdX2UKGgGR7/H3XZoPCl8aAdLA2gIR0CqTMAMlTm5dX2UKGgGR7/h06HTI/7jaAdLBGgIR0CqTNKFqSHNdX2UKGgGR8AYz94u9OARaAdLMmgIR0CqTFvttyggdX2UKGgGR7/6vRE4NqgzaAdLFWgIR0CqTSivX9R8dX2UKGgGR7/q+/5+H8CQaAdLB2gIR0CqTPL9uP3jdX2UKGgGR8ASivbGm1pkaAdLK2gIR0CqTLWkBS1mdX2UKGgGR7/r7d8Aq/dqaAdLB2gIR0CqTRo9kjHGdX2UKGgGR7/jq6nR9gF5aAdLB2gIR0CqTN0JWvKVdX2UKGgGR7/xxSYPXkHVaAdLCmgIR0CqTV46nzg/dX2UKGgGR7/MK2KEWZZ0aAdLA2gIR0CqTSnWJ79idX2UKGgGR7/ZFXJYDDCQaAdLBGgIR0CqTT8er+5wdX2UKGgGR7/WwVTJhfBvaAdLBGgIR0CqTVLI5o4/dX2UKGgGR7/3FyWAwwj/aAdLEGgIR0CqTS5wwTM8dX2UKGgGR7/h5owmE5AAaAdLCGgIR0CqTXh1klNUdX2UKGgGR7/DRaX8fmtAaAdLA2gIR0CqTTsbFS88dX2UKGgGR8AQAupS75EdaAdLIWgIR0CqTQHLRrrPdX2UKGgGR7/+LPMSsbNsaAdLFWgIR0CqTcXazu4PdX2UKGgGR7/G2MKkVN5/aAdLA2gIR0CqTUpWNm16dX2UKGgGR7/jJTl1bJOnaAdLBWgIR0CqTeH3L3bmdX2UKGgGR7/oPAXVLBbfaAdLB2gIR0CqTSfDcdo4dX2UKGgGR7/Iikfs/pt8aAdLA2gIR0CqTe9Ba9sadX2UKGgGR7//1ea8Yht+aAdLEWgIR0CqTZ5gogFHdX2UKGgGR7/zsMuvllshaAdLDGgIR0CqTihDG96DdX2UKGgGR7/iMsg+yJKraAdLBWgIR0CqTbSn+AEudX2UKGgGR7//A/xDst03aAdLEWgIR0CqTXZLZi/gdX2UKGgGR8AGUXk5p8F7aAdLHWgIR0CqTgQN9YwJdX2UKGgGR7/Ux5s0pEx7aAdLBGgIR0CqTcZ9Vmz0dX2UKGgGR7/u5X+2mYShaAdLCWgIR0CqTk7SRbKSdX2UKGgGR7/yLPppvgm7aAdLCWgIR0CqTZ2CmMwUdX2UKGgGR7/ZON5t3wCsaAdLBmgIR0CqTh33Hq/udX2UKGgGR7/+/Pw/gR9PaAdLD2gIR0CqTeGUfPondX2UKGgGR7/968Djin50aAdLFGgIR0CqTqrA57w8dX2UKGgGR7+VjI7vG6wuaAdLAWgIR0CqTq/wI+nqdX2UKGgGR8AB/o5ggHNYaAdLFGgIR0CqTnq/ub7TdX2UKGgGR7/1ab4Ju2qlaAdLDGgIR0CqThskhRqHdX2UKGgGR8ANWejEehf0aAdLI2gIR0CqTmd5prULdX2UKGgGR7/wNWp6yB07aAdLDGgIR0CqTuiHIp6QdX2UKGgGR7/MBq9Gqgh9aAdLA2gIR0CqTvfOdGy5dX2UKGgGR7/+a/7BO58SaAdLD2gIR0CqTsKCpWFOdX2UKGgGR7/qLmhdt2s8aAdLCmgIR0CqTpTLW7OFdX2UKGgGR7/y/R3NcGC7aAdLDWgIR0CqTlZ3cHnmdX2UKGgGR7/jsjmjj7yhaAdLB2gIR0CqTxVpj+aSdX2UKGgGR7+iXnhbW3BpaAdLAWgIR0CqTpmw7kn1dX2UKGgGR7/oi4SYgJTmaAdLBmgIR0CqTtvkRzzVdX2UKGgGR7+4DuBtk4FSaAdLAmgIR0CqTx75mAbydX2UKGgGR7/h/SH/LkjpaAdLBGgIR0CqTy+cYqG2dX2UKGgGR7/qFcY64lQeaAdLCGgIR0CqTnm7rcCYdX2UKGgGR7+5WdVea8YiaAdLAmgIR0CqTziNbTttdX2UKGgGR7/tPFFUhmoSaAdLCGgIR0CqTryH2ys0dX2UKGgGR7/OU7jkuHvdaAdLA2gIR0CqT0U4JeE7dX2UKGgGR7/VUBXCCSRsaAdLBGgIR0CqTs2tEG7jdX2UKGgGR7/lnQhOgxrSaAdLBmgIR0CqTpO6NEPUdX2UKGgGR7/dr0J4SpR5aAdLBGgIR0CqT1cPnSv1dX2UKGgGR7/SAq/dqL0jaAdLBGgIR0CqTt+mFajfdX2UKGgGR7+pZIQOFxn4aAdLAWgIR0CqTuQN9YwJdX2UKGgGR7/c4/NZ/0/XaAdLBmgIR0CqT3K3uuzQdX2UKGgGR8AHAWUKRdQgaAdLGGgIR0CqT0WSt/4JdX2UKGgGR7/w5lnRLK3eaAdLDGgIR0CqTsoL5RCQdX2UKGgGR7/hnRsuWa+faAdLBmgIR0CqT41YISlFdX2UKGgGR7/E/M4cWCVbaAdLAmgIR0CqT078Nx2jdX2UKGgGR7/3AvUSZjQRaAdLDmgIR0CqTyHJ1aGIdX2UKGgGR7/hcTakAPupaAdLBmgIR0CqT2i17Y03dX2UKGgGR7/1i6+WWyC4aAdLCWgIR0CqTvFWOp84dX2UKGgGR7/pTJp35eqraAdLCmgIR0CqT7keZG8VdX2UKGgGR7/ayS3b212JaAdLBGgIR0CqT3si0OVgdX2UKGgGR7/yZf6XSjQBaAdLCGgIR0CqT0fGEPDpdX2UKGgGR7/m5qEeyRjjaAdLB2gIR0CqT2rbxmTUdX2UKGgGR7/02kFfReC1aAdLDGgIR0CqTy0LDye7dX2UKGgGR7/uhJZntfG/aAdLC2gIR0CqT/HTy8SPdX2UKGgGR7/WmxMWXTmXaAdLBWgIR0CqT0RDst03dX2UKGgGR7/gVDrqt5lfaAdLBmgIR0CqUA5KODJ2dX2UKGgGR7/2TT4L1EmZaAdLCmgIR0CqT5r4WUKRdX2UKGgGR8AAH6AOJ+DwaAdLFmgIR0CqT+ZmRNh3dX2UKGgGR7/qKc3EQ5FPaAdLCGgIR0CqUDNEofCAdX2UKGgGR7/9A3974SHuaAdLEWgIR0CqT+Zv1lGxdX2UKGgGR8AJ60WuX/o8aAdLGGgIR0CqT7AKF7D3dX2UKGgGR7/H4dIXj2i+aAdLA2gIR0CqT7wtz0YkdX2UKGgGR7/n1BdD6WPcaAdLCmgIR0CqT+lFc6eYdX2UKGgGR7/UfICEHt4SaAdLBGgIR0CqT/qioKlYdX2UKGgGR7+9hWo3rD64aAdLAmgIR0CqUAOhK15TdX2UKGgGR8AQRwuM+/xlaAdLJWgIR0CqUIh4MWoFdX2UKGgGR7/esSCe2/i6aAdLBWgIR0CqUBoeHSF5dX2UKGgGR7/jpjUd7v5QaAdLBWgIR0CqUKGwaBI4dX2UKGgGR7/ZQCSzPa+OaAdLBGgIR0CqUC6g/TsqdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 13,
62
+ "n_steps": 20000,
63
+ "gamma": 0.95,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8552529b6dbc89f56b164f97d59cfbdc4a978a47f770e344057781e121a32993
3
+ size 45167
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3a9625f210a9f65d7836ceb7f4fa2326308979e885ef17c705f84374d563af0
3
+ size 46447
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2cf9a33ac0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2cf9a1ecc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1040000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699395933720098827, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1WWevkgiSr9piJ0+S864PltaYzzFIag/QvXzPz0Qzb/3OII/jEP2PpyxmD0ZdR4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvYQkvyXTs7/BxZW9XSOlvsDje7267ty9l77SPyl/v78w774/Sjo9PhunGT+5s7i/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADVZZ6+SCJKv2mInT6rnTW/+yvbPzqjnT9Lzrg+W1pjPMUhqD+AGUO/ZUesv5NVsDtC9fM/PRDNv/c4gj8nDjE+gBEuPNvw1j+MQ/Y+nLGYPRl1Hj8STZq/swepPaSO/7+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.30937067 -0.7895856 0.30768135]\n [ 0.3609489 0.01387652 1.3135306 ]\n [ 1.9059222 -1.602058 1.0173634 ]\n [ 0.4809841 0.07455751 0.61897427]]", "desired_goal": "[[-0.6426504 -1.4048811 -0.07313109]\n [-0.32253543 -0.0614965 -0.10787721]\n [ 1.6464413 -1.4960681 1.4916744 ]\n [ 0.18479267 0.6002061 -1.4429847 ]]", "observation": "[[-0.30937067 -0.7895856 0.30768135 -0.7094371 1.7122797 1.2315438 ]\n [ 0.3609489 0.01387652 1.3135306 -0.76210785 -1.3459288 0.00538129]\n [ 1.9059222 -1.602058 1.0173634 0.17290555 0.01062429 1.6792253 ]\n [ 0.4809841 0.07455751 0.61897427 -1.205477 0.08253422 -1.9965405 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA23mvvX/7Cj4U3C8+cWbGvcpmSb1LcxE81QsKvsd+Kj2is4E+CkMKPt8GbbwO1Cw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.08568164 0.135725 0.17173797]\n [-0.09687508 -0.04917029 0.00887759]\n [-0.13481076 0.04162481 0.2533236 ]\n [ 0.13502136 -0.01446697 0.16877767]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.040000000000000036, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv+eKG+K0lZ6MAWyUSwaMAXSUR0CqTAjTjNpudX2UKGgGR7/P/DtPYWcjaAdLA2gIR0CqS1MmWt2cdX2UKGgGR7/J5v99+gDiaAdLA2gIR0CqS2CVSn+AdX2UKGgGR7/TV+qioKlYaAdLA2gIR0CqS23TmW+odX2UKGgGR7/z+NkvsZ5zaAdLCmgIR0CqS7EkKNQ1dX2UKGgGR7/0WFSKm8/VaAdLDGgIR0CqTD+LehwmdX2UKGgGR7/A0uUUwi7kaAdLAmgIR0CqTEhQ3xWldX2UKGgGR7/n5qVQhwERaAdLB2gIR0CqS9OM+/xldX2UKGgGR7/XcBltj0+UaAdLBGgIR0CqTFx6fJ3gdX2UKGgGR7/Yiliz9jwyaAdLBWgIR0CqS+lTNt65dX2UKGgGR8ARCwwCbMHKaAdLMWgIR0CqTGJ8OTaCdX2UKGgGR8ACifpUxVQzaAdLEWgIR0CqTLAC4jKQdX2UKGgGR7/g8/+sHSncaAdLBmgIR0CqTH/hl18tdX2UKGgGR7/dP/rB0p3HaAdLBWgIR0CqTMfLcKw7dX2UKGgGR7/gznzQNTcZaAdLBWgIR0CqTJZdGAkLdX2UKGgGR7/iOE/SpiqiaAdLBmgIR0CqTLLupjtpdX2UKGgGR7/H3XZoPCl8aAdLA2gIR0CqTMAMlTm5dX2UKGgGR7/h06HTI/7jaAdLBGgIR0CqTNKFqSHNdX2UKGgGR8AYz94u9OARaAdLMmgIR0CqTFvttyggdX2UKGgGR7/6vRE4NqgzaAdLFWgIR0CqTSivX9R8dX2UKGgGR7/q+/5+H8CQaAdLB2gIR0CqTPL9uP3jdX2UKGgGR8ASivbGm1pkaAdLK2gIR0CqTLWkBS1mdX2UKGgGR7/r7d8Aq/dqaAdLB2gIR0CqTRo9kjHGdX2UKGgGR7/jq6nR9gF5aAdLB2gIR0CqTN0JWvKVdX2UKGgGR7/xxSYPXkHVaAdLCmgIR0CqTV46nzg/dX2UKGgGR7/MK2KEWZZ0aAdLA2gIR0CqTSnWJ79idX2UKGgGR7/ZFXJYDDCQaAdLBGgIR0CqTT8er+5wdX2UKGgGR7/WwVTJhfBvaAdLBGgIR0CqTVLI5o4/dX2UKGgGR7/3FyWAwwj/aAdLEGgIR0CqTS5wwTM8dX2UKGgGR7/h5owmE5AAaAdLCGgIR0CqTXh1klNUdX2UKGgGR7/DRaX8fmtAaAdLA2gIR0CqTTsbFS88dX2UKGgGR8AQAupS75EdaAdLIWgIR0CqTQHLRrrPdX2UKGgGR7/+LPMSsbNsaAdLFWgIR0CqTcXazu4PdX2UKGgGR7/G2MKkVN5/aAdLA2gIR0CqTUpWNm16dX2UKGgGR7/jJTl1bJOnaAdLBWgIR0CqTeH3L3bmdX2UKGgGR7/oPAXVLBbfaAdLB2gIR0CqTSfDcdo4dX2UKGgGR7/Iikfs/pt8aAdLA2gIR0CqTe9Ba9sadX2UKGgGR7//1ea8Yht+aAdLEWgIR0CqTZ5gogFHdX2UKGgGR7/zsMuvllshaAdLDGgIR0CqTihDG96DdX2UKGgGR7/iMsg+yJKraAdLBWgIR0CqTbSn+AEudX2UKGgGR7//A/xDst03aAdLEWgIR0CqTXZLZi/gdX2UKGgGR8AGUXk5p8F7aAdLHWgIR0CqTgQN9YwJdX2UKGgGR7/Ux5s0pEx7aAdLBGgIR0CqTcZ9Vmz0dX2UKGgGR7/u5X+2mYShaAdLCWgIR0CqTk7SRbKSdX2UKGgGR7/yLPppvgm7aAdLCWgIR0CqTZ2CmMwUdX2UKGgGR7/ZON5t3wCsaAdLBmgIR0CqTh33Hq/udX2UKGgGR7/+/Pw/gR9PaAdLD2gIR0CqTeGUfPondX2UKGgGR7/968Djin50aAdLFGgIR0CqTqrA57w8dX2UKGgGR7+VjI7vG6wuaAdLAWgIR0CqTq/wI+nqdX2UKGgGR8AB/o5ggHNYaAdLFGgIR0CqTnq/ub7TdX2UKGgGR7/1ab4Ju2qlaAdLDGgIR0CqThskhRqHdX2UKGgGR8ANWejEehf0aAdLI2gIR0CqTmd5prULdX2UKGgGR7/wNWp6yB07aAdLDGgIR0CqTuiHIp6QdX2UKGgGR7/MBq9Gqgh9aAdLA2gIR0CqTvfOdGy5dX2UKGgGR7/+a/7BO58SaAdLD2gIR0CqTsKCpWFOdX2UKGgGR7/qLmhdt2s8aAdLCmgIR0CqTpTLW7OFdX2UKGgGR7/y/R3NcGC7aAdLDWgIR0CqTlZ3cHnmdX2UKGgGR7/jsjmjj7yhaAdLB2gIR0CqTxVpj+aSdX2UKGgGR7+iXnhbW3BpaAdLAWgIR0CqTpmw7kn1dX2UKGgGR7/oi4SYgJTmaAdLBmgIR0CqTtvkRzzVdX2UKGgGR7+4DuBtk4FSaAdLAmgIR0CqTx75mAbydX2UKGgGR7/h/SH/LkjpaAdLBGgIR0CqTy+cYqG2dX2UKGgGR7/qFcY64lQeaAdLCGgIR0CqTnm7rcCYdX2UKGgGR7+5WdVea8YiaAdLAmgIR0CqTziNbTttdX2UKGgGR7/tPFFUhmoSaAdLCGgIR0CqTryH2ys0dX2UKGgGR7/OU7jkuHvdaAdLA2gIR0CqT0U4JeE7dX2UKGgGR7/VUBXCCSRsaAdLBGgIR0CqTs2tEG7jdX2UKGgGR7/lnQhOgxrSaAdLBmgIR0CqTpO6NEPUdX2UKGgGR7/dr0J4SpR5aAdLBGgIR0CqT1cPnSv1dX2UKGgGR7/SAq/dqL0jaAdLBGgIR0CqTt+mFajfdX2UKGgGR7+pZIQOFxn4aAdLAWgIR0CqTuQN9YwJdX2UKGgGR7/c4/NZ/0/XaAdLBmgIR0CqT3K3uuzQdX2UKGgGR8AHAWUKRdQgaAdLGGgIR0CqT0WSt/4JdX2UKGgGR7/w5lnRLK3eaAdLDGgIR0CqTsoL5RCQdX2UKGgGR7/hnRsuWa+faAdLBmgIR0CqT41YISlFdX2UKGgGR7/E/M4cWCVbaAdLAmgIR0CqT078Nx2jdX2UKGgGR7/3AvUSZjQRaAdLDmgIR0CqTyHJ1aGIdX2UKGgGR7/hcTakAPupaAdLBmgIR0CqT2i17Y03dX2UKGgGR7/1i6+WWyC4aAdLCWgIR0CqTvFWOp84dX2UKGgGR7/pTJp35eqraAdLCmgIR0CqT7keZG8VdX2UKGgGR7/ayS3b212JaAdLBGgIR0CqT3si0OVgdX2UKGgGR7/yZf6XSjQBaAdLCGgIR0CqT0fGEPDpdX2UKGgGR7/m5qEeyRjjaAdLB2gIR0CqT2rbxmTUdX2UKGgGR7/02kFfReC1aAdLDGgIR0CqTy0LDye7dX2UKGgGR7/uhJZntfG/aAdLC2gIR0CqT/HTy8SPdX2UKGgGR7/WmxMWXTmXaAdLBWgIR0CqT0RDst03dX2UKGgGR7/gVDrqt5lfaAdLBmgIR0CqUA5KODJ2dX2UKGgGR7/2TT4L1EmZaAdLCmgIR0CqT5r4WUKRdX2UKGgGR8AAH6AOJ+DwaAdLFmgIR0CqT+ZmRNh3dX2UKGgGR7/qKc3EQ5FPaAdLCGgIR0CqUDNEofCAdX2UKGgGR7/9A3974SHuaAdLEWgIR0CqT+Zv1lGxdX2UKGgGR8AJ60WuX/o8aAdLGGgIR0CqT7AKF7D3dX2UKGgGR7/H4dIXj2i+aAdLA2gIR0CqT7wtz0YkdX2UKGgGR7/n1BdD6WPcaAdLCmgIR0CqT+lFc6eYdX2UKGgGR7/UfICEHt4SaAdLBGgIR0CqT/qioKlYdX2UKGgGR7+9hWo3rD64aAdLAmgIR0CqUAOhK15TdX2UKGgGR8AQRwuM+/xlaAdLJWgIR0CqUIh4MWoFdX2UKGgGR7/esSCe2/i6aAdLBWgIR0CqUBoeHSF5dX2UKGgGR7/jpjUd7v5QaAdLBWgIR0CqUKGwaBI4dX2UKGgGR7/ZQCSzPa+OaAdLBGgIR0CqUC6g/TsqdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 13, "n_steps": 20000, "gamma": 0.95, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (641 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.6634037550538778, "std_reward": 0.9829543510699679, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-07T23:21:51.286368"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1978b185b637c3d40ce0023ac5592cb97d0ab5062ce61d1b6cd8fee7b24e8b2
3
+ size 2636