--- tags: - bertopic - summcomparer - document_text library_name: bertopic pipeline_tag: text-classification inference: false license: apache-2.0 datasets: - pszemraj/summcomparer-gauntlet-v0p1 language: - en --- # BERTopic-summcomparer-gauntlet-v0p1-all-roberta-large-v1-document_text This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ![doc-chunk-topics](document-chunk-topics.png) ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic safetensors ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("pszemraj/BERTopic-summcomparer-gauntlet-v0p1-all-roberta-large-v1-document_text") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 17 * Number of training documents: 995
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | clustering - convolutional - neural - hierarchical - autoregressive | 11 | -1_clustering_convolutional_neural_hierarchical | | 0 | betty - door - her - gillis - room | 15 | 0_betty_door_her_gillis | | 1 | frozen - anna - snow - hans - elsa | 241 | 1_frozen_anna_snow_hans | | 2 | closeup - shot - viewpoint - umpire - camera | 211 | 2_closeup_shot_viewpoint_umpire | | 3 | dory - gill - coral - marlin - ocean | 171 | 3_dory_gill_coral_marlin | | 4 | operations - structure - operation - theory - interpretation | 60 | 4_operations_structure_operation_theory | | 5 | spatial - identity - movement - identities - noir | 59 | 5_spatial_identity_movement_identities | | 6 | vocabulary - words - topic - text - topics | 45 | 6_vocabulary_words_topic_text | | 7 | encoder - captions - embeddings - decoder - caption | 40 | 7_encoder_captions_embeddings_decoder | | 8 | saw - hounds - smiled - had - hunt | 26 | 8_saw_hounds_smiled_had | | 9 | learning - assignment - data - research - project | 22 | 9_learning_assignment_data_research | | 10 | cogvideo - videos - videogpt - video - clips | 21 | 10_cogvideo_videos_videogpt_video | | 11 | lstm - recurrent - encoder - seq2seq - neural | 18 | 11_lstm_recurrent_encoder_seq2seq | | 12 | improve - next - do - going - good | 17 | 12_improve_next_do_going | | 13 | vocoding - spectrogram - enhancement - melspectrogram - audio | 14 | 13_vocoding_spectrogram_enhancement_melspectrogram | | 14 | probabilities - tagging - probability - words - gram | 12 | 14_probabilities_tagging_probability_words | | 15 | convolutional - segmentation - superpixel - convolutions - superpixels | 12 | 15_convolutional_segmentation_superpixel_convolutions |
### hierarchy ![h](https://i.imgur.com/TLa6jXT.png) ## Training hyperparameters * calculate_probabilities: True * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: True ## Framework versions * Numpy: 1.22.4 * HDBSCAN: 0.8.29 * UMAP: 0.5.3 * Pandas: 1.5.3 * Scikit-Learn: 1.2.2 * Sentence-transformers: 2.2.2 * Transformers: 4.29.2 * Numba: 0.56.4 * Plotly: 5.13.1 * Python: 3.10.11