--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # BERTopic-summcomparer-gauntlet-v0p1-sentence-t5-xl-document_text This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("pszemraj/BERTopic-summcomparer-gauntlet-v0p1-sentence-t5-xl-document_text") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 16 * Number of training documents: 630
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | convolutional - images - networks - superpixels - overfitting | 12 | -1_convolutional_images_networks_superpixels | | 0 | bruno - guy - pdf - screentalk - he | 26 | 0_bruno_guy_pdf_screentalk | | 1 | elsa - arendelle - kristoff - frozen - anna | 94 | 1_elsa_arendelle_kristoff_frozen | | 2 | gillis - script - room - ll - artie | 73 | 2_gillis_script_room_ll | | 3 | interpretation - explanation - theory - structure - merge | 72 | 3_interpretation_explanation_theory_structure | | 4 | topics - topic - documents - corpus - document | 63 | 4_topics_topic_documents_corpus | | 5 | nemo - dory - chum - gill - fish | 56 | 5_nemo_dory_chum_gill | | 6 | films - film - identity - trauma - zinnemann | 54 | 6_films_film_identity_trauma | | 7 | computational - data - pathology - medical - informatics | 47 | 7_computational_data_pathology_medical | | 8 | images - captions - representations - embeddings - image | 26 | 8_images_captions_representations_embeddings | | 9 | zaroff - rainsford - hunt - hunting - general | 24 | 9_zaroff_rainsford_hunt_hunting | | 10 | cogvideo - interpolation - videos - coglm - frames | 24 | 10_cogvideo_interpolation_videos_coglm | | 11 | assignment - essays - questions - projects - students | 17 | 11_assignment_essays_questions_projects | | 12 | things - ll - some - lol - explain | 16 | 12_things_ll_some_lol | | 13 | videos - arxiv - visual - preprint - generative | 13 | 13_videos_arxiv_visual_preprint | | 14 | spectrograms - musecoder - melspectrogram - vocoding - spectrogram | 13 | 14_spectrograms_musecoder_melspectrogram_vocoding |
## Training hyperparameters * calculate_probabilities: True * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: True ## Framework versions * Numpy: 1.22.4 * HDBSCAN: 0.8.29 * UMAP: 0.5.3 * Pandas: 1.5.3 * Scikit-Learn: 1.2.2 * Sentence-transformers: 2.2.2 * Transformers: 4.29.2 * Numba: 0.56.4 * Plotly: 5.13.1 * Python: 3.10.11