File size: 3,417 Bytes
3e63908 a3fb493 3e63908 a3fb493 3e63908 a3fb493 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.3
tags:
- axolotl
- generated_from_trainer
model-index:
- name: Mistral-7B-v0.3-sarcasm-scrolls-v2
results: []
datasets:
- BEE-spoke-data/sarcasm-scrolls
language:
- en
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: mistralai/Mistral-7B-v0.3
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
strict: false
# dataset
datasets:
- path: BEE-spoke-data/sarcasm-scrolls
type: completion # format from earlier
field: text
val_set_size: 200
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
train_on_inputs: false
group_by_length: false
# WANDB
wandb_project: sarcasm-scrolls
wandb_entity: pszemraj
wandb_watch: gradients
wandb_name: Mistral-7B-v0.3-sarcasm-scrolls-v2a
hub_model_id: pszemraj/Mistral-7B-v0.3-sarcasm-scrolls-v2
hub_strategy: every_save
gradient_accumulation_steps: 32
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_torch_fused # paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 2e-5
load_in_8bit: false
load_in_4bit: false
bf16: true
tf32: true
torch_compile: true
torch_compile_backend: inductor # Optional[str]
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
logging_steps: 3
xformers_attention:
flash_attention: true
warmup_steps: 20
# hyperparams for freq of evals, saving, etc
evals_per_epoch: 4
saves_per_epoch: 4
save_safetensors: true
save_total_limit: 1 # Checkpoints saved at a time
output_dir: ./output-axolotl/output-model-chaz
resume_from_checkpoint:
deepspeed:
weight_decay: 0.06
special_tokens:
```
</details><br>
# Mistral-7B-v0.3-sarcasm-scrolls-v2
## Model description
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) on the BEE-spoke-data/sarcasm-scrolls dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3333
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0075 | 1 | 2.3935 |
| 2.3672 | 0.2548 | 34 | 2.3638 |
| 2.3751 | 0.5096 | 68 | 2.3499 |
| 2.308 | 0.7644 | 102 | 2.3238 |
| 2.2672 | 1.0035 | 136 | 2.3027 |
| 1.702 | 1.2583 | 170 | 2.3449 |
| 1.7456 | 1.5131 | 204 | 2.3370 |
| 1.7004 | 1.7679 | 238 | 2.3333 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.1+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1 |