File size: 3,417 Bytes
3e63908
 
 
 
 
 
 
 
 
a3fb493
 
 
 
3e63908
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3fb493
 
 
3e63908
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3fb493
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.3
tags:
- axolotl
- generated_from_trainer
model-index:
- name: Mistral-7B-v0.3-sarcasm-scrolls-v2
  results: []
datasets:
- BEE-spoke-data/sarcasm-scrolls
language:
- en
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
base_model: mistralai/Mistral-7B-v0.3
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer

strict: false

# dataset
datasets:
    - path: BEE-spoke-data/sarcasm-scrolls
      type: completion # format from earlier
      field: text
val_set_size: 200

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
train_on_inputs: false
group_by_length: false

# WANDB
wandb_project: sarcasm-scrolls
wandb_entity: pszemraj
wandb_watch: gradients
wandb_name: Mistral-7B-v0.3-sarcasm-scrolls-v2a
hub_model_id: pszemraj/Mistral-7B-v0.3-sarcasm-scrolls-v2
hub_strategy: every_save

gradient_accumulation_steps: 32
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_torch_fused # paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 2e-5

load_in_8bit: false
load_in_4bit: false
bf16: true
tf32: true

torch_compile: true 
torch_compile_backend: inductor # Optional[str]
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
logging_steps: 3
xformers_attention:
flash_attention: true

warmup_steps: 20
# hyperparams for freq of evals, saving, etc
evals_per_epoch: 4
saves_per_epoch: 4
save_safetensors: true
save_total_limit: 1 # Checkpoints saved at a time
output_dir: ./output-axolotl/output-model-chaz
resume_from_checkpoint:


deepspeed:
weight_decay: 0.06

special_tokens:

```

</details><br>

# Mistral-7B-v0.3-sarcasm-scrolls-v2

## Model description

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) on the BEE-spoke-data/sarcasm-scrolls dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3333


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 2

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log        | 0.0075 | 1    | 2.3935          |
| 2.3672        | 0.2548 | 34   | 2.3638          |
| 2.3751        | 0.5096 | 68   | 2.3499          |
| 2.308         | 0.7644 | 102  | 2.3238          |
| 2.2672        | 1.0035 | 136  | 2.3027          |
| 1.702         | 1.2583 | 170  | 2.3449          |
| 1.7456        | 1.5131 | 204  | 2.3370          |
| 1.7004        | 1.7679 | 238  | 2.3333          |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.3.1+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1