--- base_model: griffin-1024-llama3t-8layer tags: - generated_from_trainer metrics: - accuracy model-index: - name: griffin-1024-llama3t-8layer-simple_wikipedia_LM-vN results: [] license: apache-2.0 datasets: - pszemraj/simple_wikipedia_LM --- # griffin-1024-llama3t-8layer-simple_wikipedia_LM-vN pretraining experiment on the pszemraj/simple_wikipedia_LM dataset. It achieves the following results on the evaluation set: - Loss: 4.3584 - Accuracy: 0.3789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 80085 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-07 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 13.6044 | 0.2495 | 100 | 12.5441 | 0.0079 | | 8.9524 | 0.4989 | 200 | 8.4254 | 0.0473 | | 7.1721 | 0.7484 | 300 | 6.6199 | 0.0389 | | 6.2087 | 0.9978 | 400 | 5.7198 | 0.2251 | | 5.4917 | 1.2473 | 500 | 4.9480 | 0.3268 | | 4.9408 | 1.4967 | 600 | 4.6730 | 0.3567 | | 4.8347 | 1.7462 | 700 | 4.4984 | 0.3707 | | 4.7023 | 1.9956 | 800 | 4.3584 | 0.3789 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1