Add device to example
Browse files
README.md
CHANGED
@@ -263,32 +263,22 @@ model-index:
|
|
263 |
- this param forces the model to use new vocabulary and create an abstractive summary, otherwise it may compile the best _extractive_ summary from the input provided.
|
264 |
- create the pipeline object:
|
265 |
|
266 |
-
```
|
267 |
-
|
268 |
from transformers import pipeline
|
269 |
|
270 |
hf_name = 'pszemraj/led-large-book-summary'
|
271 |
|
272 |
-
_model = AutoModelForSeq2SeqLM.from_pretrained(
|
273 |
-
hf_name,
|
274 |
-
low_cpu_mem_usage=True,
|
275 |
-
)
|
276 |
-
|
277 |
-
_tokenizer = AutoTokenizer.from_pretrained(
|
278 |
-
hf_name
|
279 |
-
)
|
280 |
-
|
281 |
-
|
282 |
summarizer = pipeline(
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
```
|
288 |
|
289 |
- put words into the pipeline object:
|
290 |
|
291 |
-
```
|
292 |
wall_of_text = "your words here"
|
293 |
|
294 |
result = summarizer(
|
|
|
263 |
- this param forces the model to use new vocabulary and create an abstractive summary, otherwise it may compile the best _extractive_ summary from the input provided.
|
264 |
- create the pipeline object:
|
265 |
|
266 |
+
```python
|
267 |
+
import torch
|
268 |
from transformers import pipeline
|
269 |
|
270 |
hf_name = 'pszemraj/led-large-book-summary'
|
271 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
summarizer = pipeline(
|
273 |
+
"summarization",
|
274 |
+
hf_name,
|
275 |
+
device=0 if torch.cuda.is_available() else -1,
|
276 |
+
)
|
277 |
```
|
278 |
|
279 |
- put words into the pipeline object:
|
280 |
|
281 |
+
```python
|
282 |
wall_of_text = "your words here"
|
283 |
|
284 |
result = summarizer(
|