File size: 69,305 Bytes
18fc02b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import math
import os
import time
import typing
import warnings
from contextlib import nullcontext
from typing import Callable, List, Optional, Union
import datasets
import numpy as np
import torch
import torch.nn.functional as F
from accelerate import Accelerator
from accelerate.utils import ProjectConfiguration, gather_object, is_deepspeed_available
from datasets import Dataset
from huggingface_hub import whoami
from packaging import version
from torch.optim import Adam
from transformers import (
DataCollatorForLanguageModeling,
PreTrainedTokenizer,
PreTrainedTokenizerBase,
PreTrainedTokenizerFast,
)
from ..core import (
WANDB_PADDING,
PPODecorators,
clip_by_value,
convert_to_scalar,
entropy_from_logits,
flatten_dict,
logprobs_from_logits,
masked_mean,
masked_var,
masked_whiten,
set_seed,
stack_dicts,
stats_to_np,
)
from ..import_utils import is_npu_available, is_torch_greater_2_0, is_xpu_available
from ..models import SUPPORTED_ARCHITECTURES, PreTrainedModelWrapper, create_reference_model
from . import AdaptiveKLController, BaseTrainer, FixedKLController, PPOConfig, RunningMoments
if is_deepspeed_available():
import deepspeed
MODEL_CARD_TEMPLATE = """---
license: apache-2.0
tags:
- trl
- ppo
- transformers
- reinforcement-learning
---
# {model_name}
This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to
guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
## Usage
To use this model for inference, first install the TRL library:
```bash
python -m pip install trl
```
You can then generate text as follows:
```python
from transformers import pipeline
generator = pipeline("text-generation", model="{model_id}")
outputs = generator("Hello, my llama is cute")
```
If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
```python
from transformers import AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
tokenizer = AutoTokenizer.from_pretrained("{model_id}")
model = AutoModelForCausalLMWithValueHead.from_pretrained("{model_id}")
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])
```
"""
class PPOTrainer(BaseTrainer):
"""
The PPOTrainer uses Proximal Policy Optimization to optimise language models.
Note, this trainer is heavily inspired by the original OpenAI learning to summarize work here:
https://github.com/openai/summarize-from-feedback
Attributes:
**config** (`PPOConfig`) -- Configuration object for PPOTrainer. Check the documentation of `PPOConfig` for more
details.
**model** (`PreTrainedModelWrapper`) -- Model to be optimized, Hugging Face transformer model with a value head.
Check the documentation of `PreTrainedModelWrapper` for more details.
**ref_model** (`PreTrainedModelWrapper`, *optional*) -- Reference model to be used for KL penalty, Hugging Face
transformer model with a casual language modelling head. Check the documentation of `PreTrainedModelWrapper`
for more details. If no reference model is provided, the trainer will create a reference model with the same
architecture as the model to be optimized with shared layers.
**tokenizer** (`PreTrainedTokenizerBase`) -- Tokenizer to be used for encoding the
data. Check the documentation of `transformers.PreTrainedTokenizer` and
`transformers.PreTrainedTokenizerFast` for more details.
**dataset** (Union[`torch.utils.data.Dataset`, `datasets.Dataset`], *optional*) -- PyTorch dataset or Hugging
Face dataset. This is used to create a PyTorch dataloader. If no dataset is provided, the dataloader must be
created outside the trainer users needs to design their own dataloader and make sure the batch
size that is used is the same as the one specified in the configuration object.
**optimizer** (`torch.optim.Optimizer`, *optional*) -- Optimizer to be used for training. If no optimizer is
provided, the trainer will create an Adam optimizer with the learning rate specified in the configuration
object.
**data_collator** (DataCollatorForLanguageModeling, *optional*) -- Data collator to be used for training and
passed along the dataloader
**num_shared_layers** (int, *optional*) -- Number of layers to be shared between the model and the reference
model, if no reference model is passed. If no number is provided, all the layers will be shared.
**lr_scheduler** (`torch.optim.lr_scheduler`, *optional*) -- Learning rate scheduler to be used for training.
"""
_tag_names = ["trl", "ppo"]
def __init__(
self,
config: Optional[PPOConfig] = None,
model: Optional[PreTrainedModelWrapper] = None,
ref_model: Optional[PreTrainedModelWrapper] = None,
tokenizer: Optional[PreTrainedTokenizerBase] = None,
dataset: Optional[Union[torch.utils.data.Dataset, Dataset]] = None,
optimizer: Optional[torch.optim.Optimizer] = None,
data_collator: Optional[typing.Callable] = None,
num_shared_layers: Optional[int] = None,
lr_scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
):
"""
Initialize PPOTrainer.
Args:
config (`PPOConfig`):
Configuration object for PPOTrainer. Check the documentation of `PPOConfig` for more details.
model (`PreTrainedModelWrapper`):
Hugging Face transformer model with a value head.
ref_model (`PreTrainedModelWrapper`):
Hugging Face transformer model with a casual language modelling head. Used for KL penalty
tokenizer (`transformers.PreTrainedTokenizerBase`):
Hugging Face tokenizer
dataset (Optional[Union[`torch.utils.data.Dataset`, `datasets.Dataset`]]):
PyTorch dataset or Hugging Face dataset. If a Hugging Face dataset is passed, the dataset
will be preprocessed by removing the columns that are not used by the model. If none is passed,
a warning will be raised in a multi-GPU setting.
optimizer (Optional[`torch.optim.Optimizer`]):
Optimizer used for training. If `None`, the `Adam` is used as default.
data_collator (Optional[function]):
Data collator function.
num_shared_layers (Optional[int]):
Number of shared layers between the model and the reference model. If `None`, all layers are shared.
used only if `ref_model` is `None`.
lr_scheduler (Optional[`torch.optim.lr_scheduler`]):
Learning rate scheduler used for training.
"""
super().__init__(config)
# initial seed for reproducible experiments
set_seed(config.seed)
# Step 0: check positional arguments validity
if not isinstance(config, PPOConfig):
raise ValueError(f"config must be a PPOConfig, got {type(config)}")
if not isinstance(tokenizer, (PreTrainedTokenizerBase)):
raise ValueError(
f"tokenizer must be a PreTrainedTokenizerBase like a PreTrainedTokenizer or a PreTrainedTokenizerFast, got {type(tokenizer)}"
)
if not isinstance(model, (SUPPORTED_ARCHITECTURES)):
raise ValueError(
f"model must be a PreTrainedModelWrapper, got {type(model)} - supported architectures are: {SUPPORTED_ARCHITECTURES}"
)
# Step 1: Initialize Accelerator
self.accelerator = Accelerator(
log_with=config.log_with,
gradient_accumulation_steps=config.gradient_accumulation_steps,
project_config=ProjectConfiguration(**config.project_kwargs),
**config.accelerator_kwargs,
)
# Step 1.1 Runtime variables filled by the accelerator
config.world_size = self.accelerator.num_processes
config.global_backward_batch_size = config.backward_batch_size * config.world_size
config.global_batch_size = config.batch_size * config.world_size
self.model = model
self.model_params = filter(lambda p: p.requires_grad, self.model.parameters())
self.is_encoder_decoder = hasattr(self.model, "is_encoder_decoder")
self.is_peft_model = getattr(self.model, "is_peft_model", False)
config.is_encoder_decoder = self.is_encoder_decoder
config.is_peft_model = self.is_peft_model
is_using_tensorboard = config.log_with is not None and config.log_with == "tensorboard"
self.accelerator.init_trackers(
config.tracker_project_name,
config=dict(trl_ppo_trainer_config=config.to_dict()) if not is_using_tensorboard else config.to_dict(),
init_kwargs=config.tracker_kwargs,
)
self.is_using_text_environment = getattr(config, "use_text_environment", False)
if isinstance(ref_model, SUPPORTED_ARCHITECTURES):
self.ref_model = ref_model
if num_shared_layers is not None:
warnings.warn(
"num_shared_layers is ignored when ref_model is provided. Two different models are used for the "
"model and the reference model and no layers are shared.",
UserWarning,
)
elif ref_model is None and not self.is_peft_model:
self.ref_model = create_reference_model(self.model, num_shared_layers=num_shared_layers)
elif self.is_peft_model:
self.ref_model = None
else:
raise ValueError(
f"ref_model must be a PreTrainedModelWrapper or `None`, got {type(ref_model)} - supported "
f"architectures are: {SUPPORTED_ARCHITECTURES} "
)
self.optional_peft_ctx = (
self.accelerator.unwrap_model(self.model).pretrained_model.disable_adapter
if self.is_peft_model
else nullcontext
)
if not (isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast)):
raise ValueError(
"tokenizer must be a transformers.PreTrainedTokenizer or transformers.PreTrainedTokenizerFast"
)
self.tokenizer = tokenizer
if dataset is not None and not (isinstance(dataset, torch.utils.data.Dataset) or isinstance(dataset, Dataset)):
raise ValueError("dataset must be a torch.utils.data.Dataset or datasets.Dataset")
elif dataset is None:
warnings.warn(
"No dataset is provided. Make sure to set config.batch_size to the correct value before training.",
UserWarning,
)
self.dataset = dataset
self._signature_columns = None
if self.dataset is not None:
self.dataloader = self.prepare_dataloader(self.dataset, data_collator)
elif self.dataset is None and self.accelerator.num_processes > 1:
warnings.warn(
"No dataset is provided. In a multi-GPU setting, this will lead to an error. You should"
" prepare your dataloader yourself with `dataloader = ppo_trainer.accelerator.prepare(dataloader)`"
" and using `torch.utils.data.DataLoader`, or pass a dataset to the `PPOTrainer`. Please "
" refer to the documentation for more details.",
UserWarning,
)
self.dataloader = None
else:
self.dataloader = None
# Step 3: Initialize optimizer and data collator
self.data_collator = DataCollatorForLanguageModeling(self.tokenizer, mlm=False)
if optimizer is None:
self.optimizer = Adam(
filter(lambda p: p.requires_grad, self.model.parameters()),
lr=self.config.learning_rate,
)
else:
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
if self.lr_scheduler is not None:
lr_scheduler_class = (
torch.optim.lr_scheduler._LRScheduler
if not is_torch_greater_2_0()
else torch.optim.lr_scheduler.LRScheduler
)
if not isinstance(self.lr_scheduler, lr_scheduler_class):
raise ValueError(
"lr_scheduler must be a torch.optim.lr_scheduler._LRScheduler or torch.optim.lr_scheduler.LRScheduler (for torch >= 2.0)"
)
if self.config.adap_kl_ctrl:
self.kl_ctl = AdaptiveKLController(self.config.init_kl_coef, self.config.target, self.config.horizon)
else:
self.kl_ctl = FixedKLController(self.config.init_kl_coef)
# Safety checkers for DS integration
is_deepspeed_used = self.accelerator.distributed_type == "DEEPSPEED" and hasattr(
self.accelerator.state, "deepspeed_plugin"
)
(
self.model,
self.optimizer,
self.data_collator,
self.dataloader,
self.lr_scheduler,
) = self.accelerator.prepare(
self.model,
self.optimizer,
self.data_collator,
self.dataloader,
self.lr_scheduler,
)
if is_deepspeed_used:
# Quantized models are already set on the correct device
if not self.is_peft_model and not (
getattr(self.ref_model.pretrained_model, "is_loaded_in_8bit", False)
or getattr(self.ref_model.pretrained_model, "is_loaded_in_4bit", False)
):
self.ref_model = self._prepare_deepspeed(self.ref_model)
else:
self.ref_model = self.accelerator.prepare(self.ref_model)
# In a distributed setup, only logging needs to be performed on the main process
# check: https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html
# or: https://discuss.pytorch.org/t/use-distributed-data-parallel-correctly/82500/11
self.is_distributed = self.accelerator.num_processes > 1
# init the current step
self.current_step = 0
# init variables for pushing model to hub
if config.push_to_hub_if_best_kwargs:
if "repo_id" not in config.push_to_hub_if_best_kwargs:
raise ValueError("You have to specify repo_id in order to push the model to the hub!")
self.push_to_hub_kwargs = config.push_to_hub_if_best_kwargs
self.compare_step = 0
self.highest_reward = torch.tensor(-float("inf"))
# post process for PP
if not getattr(self.model, "is_sequential_parallel", False):
self.current_device = self.accelerator.device
else:
if is_xpu_available():
self.current_device = torch.device("xpu:0")
elif is_npu_available():
self.current_device = torch.device("npu:0")
else:
self.current_device = torch.device("cuda:0")
PPODecorators.optimize_device_cache = self.config.optimize_device_cache
self.running = RunningMoments(self.accelerator)
def _filter_kwargs(self, kwargs, target_func):
"""
filter the keyword arguments that are supported by the target function.
Args:
kwargs (dict):
Keyword arguments
target_func (function):
Target function
"""
return {k: v for k, v in kwargs.items() if k in inspect.signature(target_func).parameters.keys()}
def prepare_dataloader(self, dataset: Union[torch.utils.data.Dataset, Dataset], data_collator=None):
"""
Prepare the dataloader for training.
Args:
dataset (Union[`torch.utils.data.Dataset`, `datasets.Dataset`]):
PyTorch dataset or Hugging Face dataset. If a Hugging Face dataset is passed, the dataset
will be preprocessed by removing the columns that are not used by the model.
data_collator (Optional[function]):
Data collator function.
Returns:
`torch.utils.data.DataLoader`: PyTorch dataloader
"""
if isinstance(dataset, Dataset):
dataset = self._remove_unused_columns(dataset)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=self.config.batch_size,
collate_fn=data_collator,
shuffle=True,
drop_last=True,
)
return dataloader
# Adapted from transformers.Trainer._set_signature_columns_if_needed
def _set_signature_columns_if_needed(self):
if self._signature_columns is None:
# Inspect model forward signature to keep only the arguments it accepts.
signature = inspect.signature(self.model.forward)
self._signature_columns = list(signature.parameters.keys())
# label => sentiment | we need query and response for logging purpose
self._signature_columns += ["label", "query", "response"]
# Adapted from transformers.Trainer._remove_unused_columns
def _remove_unused_columns(self, dataset: "Dataset"):
if not self.config.remove_unused_columns:
return dataset
self._set_signature_columns_if_needed()
signature_columns = self._signature_columns
ignored_columns = list(set(dataset.column_names) - set(signature_columns))
columns = [k for k in signature_columns if k in dataset.column_names]
if version.parse(datasets.__version__) < version.parse("1.4.0"):
dataset.set_format(
type=dataset.format["type"],
columns=columns,
format_kwargs=dataset.format["format_kwargs"],
)
return dataset
else:
return dataset.remove_columns(ignored_columns)
def generate(
self,
query_tensor: Union[torch.Tensor, List[torch.Tensor]],
length_sampler: Optional[Callable] = None,
batch_size: int = 4,
return_prompt: bool = True,
generate_ref_response: bool = False,
**generation_kwargs,
):
"""
Generate response with the model given the query tensor.
call the `generate` method of the model.
Args:
query_tensor (`torch.LongTensor`):
A tensor of shape (`seq_len`) containing query tokens or a list of tensors of shape (`seq_len`).
length_sampler (`Callable`, *optional*):
Callable that returns the number of newly generated tokens.
batch_size (`int`, *optional):
Batch size used for generation, defaults to `4`.
return_prompt (`bool`, *optional*):
If set to `False` the prompt is not returned but only the newly generated tokens, defaults to `True`.
generate_ref_response (`bool`, *optional*):
If set to `True` the reference response is also generated, defaults to `False`.
generation_kwargs (dict[str, Any]):
Keyword arguments for generation.
Returns:
`torch.LongTensor`: A tensor of shape (`batch_size`, `gen_len`) containing response tokens.
"""
if generate_ref_response:
ref_model = self.model if self.is_peft_model else self.ref_model
if isinstance(query_tensor, List):
response = self._generate_batched(
self.model,
query_tensor,
length_sampler=length_sampler,
batch_size=batch_size,
return_prompt=return_prompt,
**generation_kwargs,
)
if generate_ref_response:
with self.optional_peft_ctx():
ref_response = self._generate_batched(
ref_model,
query_tensor,
length_sampler=length_sampler,
batch_size=batch_size,
return_prompt=return_prompt,
**generation_kwargs,
)
else:
if len(query_tensor.shape) == 2:
raise ValueError(
"query_tensor must be a tensor of shape (`seq_len`) or a list of tensors of shape (`seq_len`)"
)
if length_sampler is not None:
generation_kwargs["max_new_tokens"] = length_sampler()
response = self.accelerator.unwrap_model(self.model).generate(
input_ids=query_tensor.unsqueeze(dim=0), **generation_kwargs
)
if generate_ref_response:
with self.optional_peft_ctx():
ref_response = ref_model.generate(input_ids=query_tensor.unsqueeze(dim=0), **generation_kwargs)
if not return_prompt and not self.is_encoder_decoder:
response = response[:, query_tensor.shape[0] :]
if generate_ref_response:
ref_response = ref_response[:, query_tensor.shape[0] :]
if generate_ref_response:
return response, ref_response
return response
def _generate_batched(
self,
model: PreTrainedModelWrapper,
query_tensors: List[torch.Tensor],
length_sampler: Optional[Callable] = None,
batch_size: int = 4,
return_prompt: bool = True,
pad_to_multiple_of: Optional[int] = None,
remove_padding: bool = True,
**generation_kwargs,
):
outputs = []
padding_side_default = self.tokenizer.padding_side
if not self.is_encoder_decoder:
self.tokenizer.padding_side = "left"
# in case we have fewer examples than bs
batch_size = min(len(query_tensors), batch_size)
for i in range(0, len(query_tensors), batch_size):
if length_sampler is not None:
generation_kwargs["max_new_tokens"] = length_sampler()
# prevent overflow if query tensors are not even multiple of bs
end_index = min(len(query_tensors), i + batch_size)
batch = query_tensors[i:end_index]
batch_mask = [torch.ones_like(element) for element in batch]
inputs = {"input_ids": batch, "attention_mask": batch_mask}
padded_inputs = self.tokenizer.pad(
inputs,
padding=True,
max_length=None,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors="pt",
).to(self.current_device)
generations = self.accelerator.unwrap_model(model).generate(**padded_inputs, **generation_kwargs)
for generation, mask in zip(generations, padded_inputs["attention_mask"]):
if not self.is_encoder_decoder:
output = generation[(1 - mask).sum() :] # remove padding
else:
output = generation
if not return_prompt and not self.is_encoder_decoder:
output = output[(mask).sum() :] # remove prompt
if remove_padding and self.tokenizer.eos_token_id in output:
pad_mask = output == self.tokenizer.eos_token_id
pad_start = torch.nonzero(pad_mask, as_tuple=False)[0, 0].item()
output = output[: pad_start + 1] # keep the eos token at the end
outputs.append(output)
self.tokenizer.padding_side = padding_side_default
return outputs
def _step_safety_checker(
self,
batch_size: int,
queries: List[torch.LongTensor],
responses: List[torch.LongTensor],
scores: List[torch.FloatTensor],
masks: Optional[List[torch.LongTensor]] = None,
):
"""
Check if the input data is valid for training.
Args:
batch_size (int):
Batch size from the config file.
queries (List[`torch.LongTensor`]):
List of tensors containing the encoded queries of shape (`query_length`)
responses (List[`torch.LongTensor`]):
List of tensors containing the encoded responses of shape (`response_length`)
scores (List[`torch.FloatTensor`]):
List of tensors containing the scores.
masks (List[`torch.LongTensor`], *optional*):
list of optional tensors containing the masks of shape (`query_length` + `response_length`)
Returns:
`tuple`: The input processed data.
"""
for name, tensor_list in zip(["queries", "responses", "scores"], [queries, responses, scores]):
if not isinstance(tensor_list, list):
raise ValueError(f"{name} must be a list of tensors - got {type(tensor_list)}")
if not isinstance(tensor_list[0], torch.Tensor):
raise ValueError(f"Elements in {name} must be tensors - got {type(tensor_list[0])}")
if batch_size is not None and len(tensor_list) != batch_size:
raise ValueError(
f"Batch size ({batch_size}) does not match number of examples - but got {len(tensor_list)} for: {name}"
)
# add queries, scores and responses on the correct device
queries = [tensor.to(self.current_device) for tensor in queries]
responses = [tensor.to(self.current_device) for tensor in responses]
scores = [tensor.to(self.current_device) for tensor in scores]
masks = [tensor.to(self.current_device) for tensor in masks] if masks is not None else None
# squeeze scores if needed
for i, score in enumerate(scores):
if score.dim() > 1:
raise ValueError(f"Scores must be 1-dimensional - got {score.dim()} for {score}")
elif score.dim() == 1:
scores[i] = score.squeeze()
return queries, responses, scores, masks
@PPODecorators.empty_device_cache()
def step(
self,
queries: List[torch.LongTensor], # The list of prompts used to generate responses from the old model (offline policy)
responses: List[torch.LongTensor], # A list of resnponses generated by the old model (offline policy)
scores: List[torch.FloatTensor], # A list of reward associated with each response. One reward for each response (NOT for each token of the response)
response_masks: Optional[List[torch.LongTensor]] = None,
):
"""
Run a PPO optimisation step given a list of queries, model responses, and rewards.
Args:
queries (List[`torch.LongTensor`]):
List of tensors containing the encoded queries of shape (`query_length`)
responses (List[`torch.LongTensor`]):
List of tensors containing the encoded responses of shape (`response_length`)
scores (List[`torch.FloatTensor`]):
List of tensors containing the scores.
response_masks (List[`torch.FloatTensor`], *optional*)):
List of tensors containing masks of the response tokens.
Returns:
`dict[str, Any]`: A summary of the training statistics
"""
bs = self.config.batch_size
# queries: input_ids of the prompts;
# responses: input_ids of the responses;
# scores: score from reward model (one per response)
# Verify input tensors (check types, shapes, etc.)
queries, responses, scores, response_masks = self._step_safety_checker(
bs, queries, responses, scores, response_masks
)
# Indicates the rewards given to the responses. One scalar for each response.
# shape: (batch_size)
scores = torch.tensor(scores, device=self.current_device)
# if self.config.use_score_scaling:
# # Score scaling
# scores_mean, scores_std = self.running.update(scores)
# tensor_to_kwargs = dict(dtype=scores.dtype, device=scores.device)
# score_scaling_factor = self.running.std.to(**tensor_to_kwargs) + torch.finfo(scores.dtype).eps
# if self.config.use_score_norm:
# scores = (scores - self.running.mean.to(**tensor_to_kwargs)) / score_scaling_factor
# else:
# scores /= score_scaling_factor
# if self.config.score_clip is not None:
# # Score clipping
# scores_dtype = scores.dtype
# scores = torch.clip(scores.float(), -self.config.score_clip, self.config.score_clip).to(dtype=scores_dtype)
# # if we want to push best model to the hub
# if hasattr(self, "highest_reward"):
# if self.compare_step % self.config.compare_steps == 0:
# curr_mean_reward = scores.mean()
# # if the best reward ever seen
# if curr_mean_reward > self.highest_reward:
# self.highest_reward = curr_mean_reward
# # push model to hub
# self.push_to_hub(**self.push_to_hub_kwargs)
# self.compare_step += 1
timing = dict()
t0 = time.time()
t = time.time()
# Join the query and the response to create a input_ids tensor
# Also generate the attention masks (for padding). Padding is added so that all the query+response can be joined in the same tensor
# Dictionary with input_ids and attention_mask.
# Shape of input_ids: (batch_size, seq_len)
# Shape of attention_mask: (batch_size, seq_len). The attention mask just masks out the padding token.
model_inputs = self.prepare_model_inputs(queries, responses)
# if self.is_distributed:
# pad_first = self.tokenizer.padding_side == "left"
# model_inputs["input_ids"] = self.accelerator.pad_across_processes(
# model_inputs["input_ids"],
# dim=1,
# pad_index=self.tokenizer.pad_token_id,
# pad_first=pad_first,
# )
# model_inputs["attention_mask"] = self.accelerator.pad_across_processes(
# model_inputs["attention_mask"], dim=1, pad_index=0, pad_first=pad_first
# )
# if self.is_encoder_decoder:
# model_inputs["decoder_input_ids"] = self.accelerator.pad_across_processes(
# model_inputs["decoder_input_ids"],
# dim=1,
# pad_index=self.tokenizer.pad_token_id,
# pad_first=pad_first,
# )
# model_inputs["decoder_attention_mask"] = self.accelerator.pad_across_processes(
# model_inputs["decoder_attention_mask"],
# dim=1,
# pad_index=0,
# pad_first=pad_first,
# )
model_inputs_names = list(model_inputs.keys())
full_kl_penalty = self.config.kl_penalty == "full" # It is going to be False in our case.
# Since the given trajectories from the offline model do not have the logprobs and value estimations for each position (action), we need to calculate them.
with torch.no_grad():
# Calculate the log probabilities of all tokens of each sentence
# The masks indicate which log probabilities to use (exclude query tokens and padding tokens)
# all_logprobs: (Batch_Size, Seq_Len - 1) where Seq_Len is the maximum length of a query+response
# values: (Batch_Size, Seq_Len - 1), masks: (Batch_Size, Seq_Len - 1)
all_logprobs, logits_or_none, values, masks = self.batched_forward_pass(
self.model,
queries,
responses,
model_inputs,
response_masks=response_masks,
return_logits=full_kl_penalty,
)
with self.optional_peft_ctx():
# Get the log probabilities also w.r.t the reference model (frozen model)
ref_logprobs, ref_logits_or_none, _, _ = self.batched_forward_pass(
self.model if self.is_peft_model else self.ref_model,
queries,
responses,
model_inputs,
return_logits=full_kl_penalty,
)
timing["time/ppo/forward_pass"] = time.time() - t
with torch.no_grad():
t = time.time()
if full_kl_penalty:
# === NOT USED === #
active_full_logprobs = logprobs_from_logits(logits_or_none, None, gather=False)
ref_full_logprobs = logprobs_from_logits(ref_logits_or_none, None, gather=False)
rewards, non_score_reward, kls = self.compute_rewards(
scores, active_full_logprobs, ref_full_logprobs, masks
)
else:
# Use the scores (from reward model) and the log probabilities to generate the rewards.
# rewards: (Batch_Size, Seq_Len - 1)
rewards, non_score_reward, kls = self.compute_rewards(scores, all_logprobs, ref_logprobs, masks)
timing["time/ppo/compute_rewards"] = time.time() - t
t = time.time()
# Use the rewards and the values to compute the advantage using GAE.
# values: (Batch_Size, Seq_Len - 1)
# rewards: (Batch_Size, Seq_Len-1)
# returns (Q-values): (Batch_Size, Seq_Len-1)
values, advantages, returns = self.compute_advantages(values, rewards, masks)
timing["time/ppo/compute_advantages"] = time.time() - t
# This represents all the trajectories sampled (our storage of trajectories) using the old policy (offline).
# upcast to float32 to avoid dataset issues
batch_dict = {
"queries": queries,
"responses": responses,
"logprobs": all_logprobs.to(torch.float32),
"values": values.to(torch.float32),
"masks": masks,
"advantages": advantages,
"returns": returns,
}
batch_dict.update(model_inputs)
# ======================================
# PHASE 2: Optimize the model using PPO
# ======================================
t = time.time()
all_stats = []
early_stop = False
for _ in range(self.config.ppo_epochs):
if early_stop:
break
b_inds = np.random.permutation(bs) # Shuffle the trajectories
for backward_batch_start in range(0, bs, self.config.backward_batch_size):
backward_batch_end = backward_batch_start + self.config.backward_batch_size
# Get the items to retrieve from the trajectories storage
backward_batch_inds = b_inds[backward_batch_start:backward_batch_end]
# Extract a mini-batch from the macro-batch extracted from the trajectories
for mini_batch_start in range(0, self.config.backward_batch_size, self.config.mini_batch_size):
mini_batch_end = mini_batch_start + self.config.mini_batch_size
mini_batch_inds = backward_batch_inds[mini_batch_start:mini_batch_end]
# This is the sampled mini-batch that will be used to optimize the model
mini_batch_dict = {
"logprobs": batch_dict["logprobs"][mini_batch_inds],
"values": batch_dict["values"][mini_batch_inds],
"masks": batch_dict["masks"][mini_batch_inds],
# hacks: the queries and responses are ragged.
"queries": [batch_dict["queries"][i] for i in mini_batch_inds],
"responses": [batch_dict["responses"][i] for i in mini_batch_inds],
"advantages": batch_dict["advantages"][mini_batch_inds],
"returns": batch_dict["returns"][mini_batch_inds],
}
for k in model_inputs_names:
mini_batch_dict[k] = batch_dict[k][mini_batch_inds]
with self.accelerator.accumulate(self.model):
model_inputs = {k: mini_batch_dict[k] for k in model_inputs_names}
# Calculate the logprobs, logits and values of the online model (new policy)
logprobs, logits, vpreds, _ = self.batched_forward_pass(
self.model,
mini_batch_dict["queries"],
mini_batch_dict["responses"],
model_inputs,
return_logits=True,
)
# Perform a training step using the logprobs from the old policy and the logprobs from the new policy
train_stats = self.train_minibatch(
mini_batch_dict["logprobs"],
mini_batch_dict["values"],
logprobs,
logits,
vpreds,
mini_batch_dict["masks"],
mini_batch_dict["advantages"],
mini_batch_dict["returns"],
)
all_stats.append(train_stats)
# typically, early stopping is done at the epoch level
if self.config.early_stopping:
policykl = train_stats["policy/policykl"]
early_stop = self._early_stop(policykl)
if early_stop:
break
timing["time/ppo/optimize_step"] = time.time() - t
t = time.time()
train_stats = stack_dicts(all_stats)
# reshape advantages/ratios such that they are not averaged.
train_stats["policy/advantages"] = torch.flatten(train_stats["policy/advantages"]).unsqueeze(0)
train_stats["policy/advantages"] = torch.nan_to_num(train_stats["policy/advantages"], WANDB_PADDING)
train_stats["policy/ratio"] = torch.flatten(train_stats["policy/ratio"]).unsqueeze(0)
stats = self.record_step_stats(
scores=scores,
logprobs=all_logprobs,
ref_logprobs=ref_logprobs,
non_score_reward=non_score_reward,
train_stats=train_stats,
kl_coef=self.kl_ctl.value,
masks=masks,
queries=queries,
responses=responses,
kls=kls,
)
# Gather/Reduce stats from all processes
if self.is_distributed:
stats = self.gather_stats(stats)
stats = stats_to_np(stats)
timing["time/ppo/calc_stats"] = time.time() - t
stats["ppo/learning_rate"] = self.optimizer.param_groups[0]["lr"]
# Update the KL control - multiply the batch_size by the number of processes
self.kl_ctl.update(
stats["objective/kl"],
self.config.batch_size * self.accelerator.num_processes,
)
# Log the total ppo time
timing["time/ppo/total"] = time.time() - t0
stats.update(timing)
# post-process stats for tensorboard and other loggers
if self.config.log_with != "wandb":
stats = convert_to_scalar(stats)
if self.lr_scheduler is not None:
self.lr_scheduler.step()
return stats
def _early_stop(self, policykl):
r"""
Handles the early stopping logic. If the policy KL is greater than the target KL, then the gradient is zeroed and
the optimization step is skipped.
This also handles the multi-gpu case where the policy KL is averaged across all processes.
Args:
policy_kl (torch.Tensor):
the policy KL
Returns:
`bool`: whether to early stop or not
"""
early_stop = False
if not self.config.early_stopping:
return early_stop
if not self.is_distributed and policykl > 1.5 * self.config.target_kl:
self.optimizer.zero_grad()
early_stop = True
elif self.is_distributed:
import torch.distributed as dist
# Wait for all processes to finish
dist.barrier()
# all gather the policykl
dist.all_reduce(policykl, dist.ReduceOp.SUM)
policykl /= self.accelerator.num_processes
if policykl > 1.5 * self.config.target_kl:
self.optimizer.zero_grad()
early_stop = True
return early_stop
def gather_stats(self, stats):
"""
Gather stats from all processes. Useful in the context of distributed training.
Args:
stats (dict[str, Any]):
a dictionary of stats to be gathered. The stats should contain torch tensors.
Returns:
`dict[str, Any]`: A dictionary of stats with the tensors gathered.
"""
import torch.distributed as dist
# Wait for all processes to finish
dist.barrier()
for k, v in stats.items():
if isinstance(v, torch.Tensor):
dist.all_reduce(v.to(self.accelerator.device), dist.ReduceOp.SUM)
v /= self.accelerator.num_processes
stats[k] = v
return stats
def prepare_model_inputs(self, queries: torch.Tensor, responses: torch.Tensor):
if self.is_encoder_decoder:
input_data = self.data_collator(
[{"input_ids": q, "attention_mask": torch.ones_like(q)} for q in queries]
).to(self.current_device)
decoder_inputs = self.data_collator(
[{"input_ids": r, "attention_mask": torch.ones_like(r)} for r in responses]
).to(self.current_device)
input_data["decoder_input_ids"] = decoder_inputs["input_ids"]
input_data["decoder_attention_mask"] = decoder_inputs["attention_mask"]
else:
input_ids = [torch.cat([q, r]) for q, r in zip(queries, responses)]
input_data = self.data_collator(
[{"input_ids": ids, "attention_mask": torch.ones_like(ids)} for ids in input_ids]
).to(self.current_device)
input_data.pop("labels", None) # we don't want to compute LM losses
return input_data
@PPODecorators.empty_device_cache()
def batched_forward_pass(
self,
model: PreTrainedModelWrapper,
queries: torch.Tensor,
responses: torch.Tensor,
model_inputs: dict,
return_logits: bool = False,
response_masks: Optional[torch.Tensor] = None,
):
"""
Calculate model outputs in multiple batches.
Args:
queries (`torch.LongTensor`):
List of tensors containing the encoded queries, shape (`batch_size`, `query_length`)
responses (`torch.LongTensor`):
List of tensors containing the encoded responses, shape (`batch_size`, `response_length`)
return_logits (`bool`, *optional*, defaults to `False`):
Whether to return all_logits. Set to `False` if logits are not needed to reduce memory consumption.
Returns:
(tuple):
- all_logprobs (`torch.FloatTensor`): Log probabilities of the responses,
shape (`batch_size`, `response_length`)
- all_ref_logprobs (`torch.FloatTensor`): Log probabilities of the responses,
shape (`batch_size`, `response_length`)
- all_values (`torch.FloatTensor`): Values of the responses, shape (`batch_size`, `response_length`)
"""
bs = len(queries)
fbs = self.config.mini_batch_size
all_logprobs = []
all_logits = []
all_masks = []
all_values = []
model.eval()
# Since each batch can be big and may not fit in memory, we calculate the logits and log probabilities by splitting the batch into smaller batches of size `fbs`
for i in range(math.ceil(bs / fbs)):
# Get the input tensors for the current mini batch (of size `fbs`)
input_kwargs = {key: value[i * fbs : (i + 1) * fbs] for key, value in model_inputs.items()}
query_batch = queries[i * fbs : (i + 1) * fbs]
response_batch = responses[i * fbs : (i + 1) * fbs]
if response_masks is not None:
response_masks_batch = response_masks[i * fbs : (i + 1) * fbs]
# Obtain the logits corresponding to each token in the input and the corresponding value from the ValueHead.
# The input is the concatenation of the query and the response.
# logits: (Batch, Seq_Length, Vocab_Size),
# values: (Batch, Seq_Length)
logits, _, values = model(**input_kwargs)
if self.is_encoder_decoder:
input_ids = input_kwargs["decoder_input_ids"]
attention_mask = input_kwargs["decoder_attention_mask"]
else:
input_ids = input_kwargs["input_ids"]
attention_mask = input_kwargs["attention_mask"]
# Calculate the log probabilities for each token.
# This can be obtained by the logits output by the token for each token (and by applying softmax).
# logits: (Batch_Size, Seq_Length - 1)
logprobs = logprobs_from_logits(logits[:, :-1, :], input_ids[:, 1:])
masks = torch.zeros_like(attention_mask)
masks[:, :-1] = attention_mask[:, 1:] # Indicates for which tokens we have the logprobs
for j in range(len(query_batch)):
if self.is_encoder_decoder:
# Decoder sentence starts always in the index 1 after padding in the Enc-Dec Models
start = 1
end = attention_mask[j, :].sum() - 1
else:
# logprobs starts from the first response token
start = len(query_batch[j]) - 1
if attention_mask[j, 0] == 0: # offset left padding
start += attention_mask[j, :].nonzero()[0]
# The index corresponding to the end position in the entire (query+response) sequence
end = start + len(response_batch[j])
if response_masks is not None:
response_masks_batch[j] = torch.cat(
(torch.zeros_like(query_batch[j]), response_masks_batch[j])
)[1:]
# All the tokens for which we don't have logprobs are masked out
# Mask out any token before the first response token (so mask out the prompt tokens)
masks[j, :start] = 0
# Mask out any token that comes after the response tokens (so mask out any padding tokens)
masks[j, end:] = 0
if response_masks is not None:
masks[j, start:end] = masks[j, start:end] * response_masks_batch[j][start:end]
if return_logits:
all_logits.append(logits)
else:
del logits
all_values.append(values)
all_logprobs.append(logprobs)
all_masks.append(masks)
return (
torch.cat(all_logprobs),
torch.cat(all_logits)[:, :-1] if return_logits else None,
torch.cat(all_values)[:, :-1],
torch.cat(all_masks)[:, :-1],
)
@PPODecorators.empty_device_cache()
def train_minibatch(
self,
old_logprobs: torch.FloatTensor, # log probabilities under the OLD policy (offline)
values: torch.FloatTensor, # values under the OLD policy (offline)
logprobs: torch.FloatTensor, # log probabilities under the new policy (online)
logits: torch.FloatTensor, # logits under the new policy (online)
vpreds: torch.FloatTensor, # values under the new policy (online)
mask: torch.LongTensor, # indicates for which tokens the log probabilities correspond to
advantages: torch.FloatTensor, # advantages calculated under the OLD policy (offline)
returns: torch.FloatTensor, # returns calculated under the OLD policy (offline)
):
"""
Train one PPO minibatch
Args:
logprobs (`torch.FloatTensor`):
Log probabilities of the model, shape [mini_batch_size, response_length]
values (`torch.FloatTensor`):
Values of the value head, shape [mini_batch_size, response_length]
query (`torch.LongTensor`):
Encoded queries, shape [mini_batch_size, query_length]
response (`torch.LongTensor`):
Encoded responses, shape [mini_batch_size, response_length]
model_input (`torch.LongTensor`):
Concatenated queries and responses, shape [mini_batch_size, query_length+response_length]
Returns:
train_stats (dict[str, `torch.Tensor`]):
Dictionary of training statistics
"""
self.model.train()
loss_p, loss_v, train_stats = self.loss(
old_logprobs, values, logits, vpreds, logprobs, mask, advantages, returns
)
loss = loss_p + loss_v # the loss is the sum of the policy_gradient loss and the values loss
self.accelerator.backward(loss)
if self.config.max_grad_norm is not None:
if self.accelerator.sync_gradients:
self.accelerator.clip_grad_norm_(self.model_params, self.config.max_grad_norm)
self.optimizer.step()
# we call optimizer.zero_grad() every time and let `accelerator` handle accumulation
# see https://huggingface.co/docs/accelerate/usage_guides/gradient_accumulation#the-finished-code
self.optimizer.zero_grad()
return train_stats
def compute_rewards(
self,
scores: torch.FloatTensor,
logprobs: torch.FloatTensor,
ref_logprobs: torch.FloatTensor,
masks: torch.LongTensor,
):
"""
Compute per token rewards from scores and KL-penalty.
Args:
scores (`torch.FloatTensor`):
Scores from the reward model, shape (`batch_size`)
logprobs (`torch.FloatTensor`):
Log probabilities of the model, shape (`batch_size`, `response_length`)
ref_logprobs (`torch.FloatTensor`):
Log probabilities of the reference model, shape (`batch_size`, `response_length`)
Returns:
`torch.FloatTensor`: Per token rewards, shape (`batch_size`, `response_length`)
`torch.FloatTensor`: Non score rewards, shape (`batch_size`, `response_length`)
`torch.FloatTensor`: KL penalty, shape (`batch_size`, `response_length`)
"""
rewards, non_score_rewards, kls = [], [], []
for score, logprob, ref_logprob, mask in zip(scores, logprobs, ref_logprobs, masks):
# compute KL penalty (from difference in logprobs)
# shape: (Seq_Len) - represents the differece in logprobs for each token (frozen model vs fine-tuned model)
kl = self._kl_penalty(logprob, ref_logprob)
kls.append(kl)
non_score_reward = -self.kl_ctl.value * kl
non_score_rewards.append(non_score_reward)
reward = non_score_reward.clone()
last_non_masked_index = mask.nonzero()[-1]
# The reward is initially initialized with -KL penalty. Then we add the score given by the reward model only to the last generated token of the response
# Basically we are penalizing the reward given by the reward model by the KL penalty (how much the response differs from the frozen model)
# shape: (Seq_Len)
reward[last_non_masked_index] += score
rewards.append(reward)
return torch.stack(rewards), torch.stack(non_score_rewards), torch.stack(kls)
def _kl_penalty(self, logprob: torch.FloatTensor, ref_logprob: torch.FloatTensor) -> torch.FloatTensor:
if self.config.kl_penalty == "kl":
return logprob - ref_logprob
if self.config.kl_penalty == "abs":
return (logprob - ref_logprob).abs()
if self.config.kl_penalty == "mse":
return 0.5 * (logprob - ref_logprob).square()
if self.config.kl_penalty == "full":
# Flip is required due to this issue? :https://github.com/pytorch/pytorch/issues/57459
return F.kl_div(ref_logprob, logprob, log_target=True, reduction="none").sum(-1)
raise NotImplementedError
def compute_advantages(
self,
values: torch.FloatTensor,
rewards: torch.FloatTensor,
mask: torch.FloatTensor,
):
lastgaelam = 0
advantages_reversed = []
gen_len = rewards.shape[-1]
values = values * mask
rewards = rewards * mask
# if self.config.whiten_rewards:
# rewards = masked_whiten(rewards, mask, shift_mean=False)
for t in reversed(range(gen_len)):
nextvalues = values[:, t + 1] if t < gen_len - 1 else 0.0 # Value function evaluated at time (t+1)
delta = rewards[:, t] + self.config.gamma * nextvalues - values[:, t] # From the formula of GAE: delta_t = r_t + gamma * V(s_{t+1}) - V(s_t)
lastgaelam = delta + self.config.gamma * self.config.lam * lastgaelam # Save the GAE for the next iteration
advantages_reversed.append(lastgaelam)
advantages = torch.stack(advantages_reversed[::-1]).transpose(0, 1) # Reverse the advantages and stack them
returns = advantages + values # Since Advantage = Q - V, we can calculate Q = Advantage + V. The Q values are necessary for training the value function estimation.
advantages = masked_whiten(advantages, mask)
advantages = advantages.detach()
return values, advantages, returns
def loss(
self,
old_logprobs: torch.FloatTensor, # log probabilities under the OLD policy (offline)
values: torch.FloatTensor, # values under the OLD policy (offline)
logits: torch.FloatTensor, # logits under the NEW policy (online)
vpreds: torch.FloatTensor, # values under the NEW policy (online)
logprobs: torch.FloatTensor, # log probabilities under the NEW policy (online)
mask: torch.LongTensor, # which tokens the log probabilities correspond to
advantages: torch.FloatTensor, # advantages calculated using the OLD policy (offline)
returns: torch.FloatTensor, # state-actions (Q-values) calculated using the OLD policy (offline)
):
"""
Calculate policy and value losses.
Args:
old_logprobs (`torch.FloatTensor`):
Log probabilities of the model, shape (`batch_size`, `response_length`)
values (`torch.FloatTensor`):
Values of the value head, shape (`batch_size`, `response_length`)
rewards (`torch.FloatTensor`):
Rewards from the reward model, shape (`batch_size`, `response_length`)
logits (`torch.FloatTensor`):
Logits of the model, shape (`batch_size`, `response_length`, `vocab_size`)
v_pred (`torch.FloatTensor`):
Values of the value head, shape (`batch_size`, `response_length`)
logprobs (`torch.FloatTensor`):
Log probabilities of the model, shape (`batch_size`, `response_length`)
"""
vpredclipped = clip_by_value(
vpreds,
values - self.config.cliprange_value,
values + self.config.cliprange_value,
)
# Loss for the value head
vf_losses1 = (vpreds - returns) ** 2 # This is the loss according to the formula in the slides. (V(s) - Q(s, a))^2
vf_losses2 = (vpredclipped - returns) ** 2
vf_loss = 0.5 * masked_mean(torch.max(vf_losses1, vf_losses2), mask)
vf_clipfrac = masked_mean(torch.gt(vf_losses2, vf_losses1).float(), mask)
# Ratio between the log probability of the new policy and the old policy
ratio = torch.exp(logprobs - old_logprobs)
# The "minus" sign is because we want to maximize the objective function, but the optimizer minimizes the loss
pg_losses = -advantages * ratio # as per formula, ratio of the log probs multiplied by the advantage
pg_losses2 = -advantages * torch.clamp(ratio, 1.0 - self.config.cliprange, 1.0 + self.config.cliprange)
# "max" instead of "min" because we want to maximize the objective function, but the optimizer minimizes the loss
pg_loss = masked_mean(torch.max(pg_losses, pg_losses2), mask) # policy gradient loss
pg_clipfrac = masked_mean(torch.gt(pg_losses2, pg_losses).float(), mask)
loss = pg_loss + self.config.vf_coef * vf_loss
avg_ratio = masked_mean(ratio, mask).item()
if avg_ratio > self.config.ratio_threshold:
warnings.warn(
f"The average ratio of batch ({avg_ratio:.2f}) exceeds threshold {self.config.ratio_threshold:.2f}. Skipping batch."
)
pg_loss = pg_loss * 0.0
vf_loss = vf_loss * 0.0
loss = loss * 0.0
# The entropy to force the model to explore
entropy = masked_mean(entropy_from_logits(logits), mask)
approxkl = 0.5 * masked_mean((logprobs - old_logprobs) ** 2, mask)
policykl = masked_mean(old_logprobs - logprobs, mask)
return_mean, return_var = masked_mean(returns, mask), masked_var(returns, mask)
value_mean, value_var = masked_mean(values, mask), masked_var(values, mask)
stats = dict(
loss=dict(policy=pg_loss.detach(), value=vf_loss.detach(), total=loss.detach()),
policy=dict(
entropy=entropy.detach(),
approxkl=approxkl.detach(),
policykl=policykl.detach(),
clipfrac=pg_clipfrac.detach(),
advantages=advantages.detach(),
advantages_mean=masked_mean(advantages, mask).detach(),
ratio=ratio.detach(),
),
returns=dict(mean=return_mean.detach(), var=return_var.detach()),
val=dict(
vpred=masked_mean(vpreds, mask).detach(),
error=masked_mean((vpreds - returns) ** 2, mask).detach(),
clipfrac=vf_clipfrac.detach(),
mean=value_mean.detach(),
var=value_var.detach(),
),
)
return pg_loss, self.config.vf_coef * vf_loss, flatten_dict(stats)
def record_step_stats(self, kl_coef: float, **data):
"""
Record training step statistics.
Args:
kl_coef (`float`):
KL coefficient
data (`dict`):
Dictionary of training step data
Returns:
stats (`dict`):
Dictionary of training step statistics
"""
mask = data.pop("masks")
kls = data.pop("kls")
kl_list = ((kls) * mask).sum(axis=-1)
mean_kl = kl_list.mean()
mean_entropy = (-data["logprobs"] * mask).sum(axis=-1).mean()
mean_non_score_reward = masked_mean(
data["non_score_reward"], mask
) # non_score_reward is size `batch_size`, `response_length`
mean_scores = data["scores"].mean() # scores is size `batch_size`
std_scores = data["scores"].std()
if mean_kl.item() < -1.0:
# warn users
warnings.warn(
f"KL divergence is starting to become negative: {mean_kl.item():.2f} - this might be a precursor for failed training."
" sometimes this happens because the generation kwargs are not correctly set. Please make sure"
" that the generation kwargs are set correctly, or review your training hyperparameters."
)
stats = {
"objective/kl": mean_kl,
"objective/kl_dist": kl_list,
"objective/logprobs": data["logprobs"],
"objective/ref_logprobs": data["ref_logprobs"],
"objective/kl_coef": kl_coef,
"objective/entropy": mean_entropy,
"ppo/mean_non_score_reward": mean_non_score_reward,
"ppo/mean_scores": mean_scores,
"ppo/std_scores": std_scores,
}
# Log text properties
query_lens = torch.tensor([len(query) for query in data["queries"]], dtype=torch.float)
response_lens = torch.tensor([len(response) for response in data["responses"]], dtype=torch.float)
stats["tokens/queries_len_mean"] = torch.mean(query_lens).cpu().numpy().item()
stats["tokens/queries_len_std"] = torch.std(query_lens).cpu().numpy().item()
stats["tokens/queries_dist"] = query_lens.cpu().numpy()
stats["tokens/responses_len_mean"] = torch.mean(response_lens).cpu().numpy().item()
stats["tokens/responses_len_std"] = torch.std(response_lens).cpu().numpy().item()
stats["tokens/responses_dist"] = response_lens.cpu().numpy()
for k, v in data["train_stats"].items():
stats[f"ppo/{k}"] = torch.mean(v, axis=0)
stats["ppo/val/var_explained"] = 1 - stats["ppo/val/error"] / stats["ppo/returns/var"]
return stats
def log_stats(
self,
stats: dict,
batch: dict,
rewards: List[torch.FloatTensor],
columns_to_log: typing.Iterable[str] = ("query", "response"),
):
"""
A function that logs all the training stats. Call it at the end of each epoch.
Args:
stats (dict[str, Any]):
A dictionary of training stats.
batch (dict[str, Any]):
A dictionary of batch data, this contains the queries and responses.
rewards (`List[torch.FloatTensor]`):
A tensor of rewards.
"""
# all gather stats
if not isinstance(rewards, torch.Tensor):
rewards = torch.tensor(rewards).to(self.current_device)
rewards = self.accelerator.gather(rewards).flatten()
if self.config.log_with == "wandb":
import wandb
if any(column_to_log not in batch.keys() for column_to_log in columns_to_log):
raise ValueError(f"Columns to log {columns_to_log} are not present in the batch {batch.keys()}.")
batch_list = [batch[column_to_log] for column_to_log in columns_to_log]
if self.is_distributed:
gathered_batch_list = []
for b in batch_list:
flattened = gather_object(b)
gathered_batch_list.append(flattened)
batch_list = gathered_batch_list
# Log only if we are in the main process
if self.accelerator.is_main_process:
logs = {}
# Log stats
if "query" not in batch.keys() and "response" not in batch.keys():
# warn the user that the game logs will not be logged
warnings.warn(
"The game logs will not be logged because the batch does not contain the keys 'query' and "
"'response'. "
)
elif self.config.log_with == "wandb":
table_rows = [list(r) for r in zip(*batch_list, rewards.cpu().tolist())]
logs.update({"game_log": wandb.Table(columns=[*columns_to_log, "reward"], rows=table_rows)})
logs.update(stats)
# manually cast in fp32 for bf16 torch tensors
for k, v in logs.items():
if isinstance(v, torch.Tensor) and v.dtype == torch.bfloat16:
logs[k] = v.float()
logs["env/reward_mean"] = torch.mean(rewards).cpu().numpy().item()
logs["env/reward_std"] = torch.std(rewards).cpu().numpy().item()
logs["env/reward_dist"] = rewards.cpu().numpy()
if self.config.log_with == "tensorboard":
# update the current step
self.current_step += 1
self.accelerator.log(
logs,
step=self.current_step if self.config.log_with == "tensorboard" else None,
)
def create_model_card(self, path: str, model_name: Optional[str] = "TRL Model") -> None:
"""Creates and saves a model card for a TRL model.
Args:
path (`str`): The path to save the model card to.
model_name (`str`, *optional*): The name of the model, defaults to `TRL Model`.
"""
try:
user = whoami()["name"]
# handle the offline case
except Exception:
warnings.warn("Cannot retrieve user information assuming you are running in offline mode.")
return
if not os.path.exists(path):
os.makedirs(path)
model_card_content = MODEL_CARD_TEMPLATE.format(model_name=model_name, model_id=f"{user}/{path}")
with open(os.path.join(path, "README.md"), "w", encoding="utf-8") as f:
f.write(model_card_content)
def _save_pretrained(self, save_directory: str) -> None:
self.accelerator.unwrap_model(self.model).save_pretrained(save_directory)
self.tokenizer.save_pretrained(save_directory)
self.create_model_card(save_directory)
def _show_tokens(self, tokens, masks):
from rich import print
from rich.text import Text
text = Text()
for _i, (token, mask) in enumerate(zip(tokens, masks)):
if mask == 1:
text.append(self.tokenizer.decode(token.item()), style="black on deep_sky_blue1")
text.append(" ")
else:
text.append(self.tokenizer.decode(token.item()), style="black on cyan3")
text.append(" ")
print(text)
def _prepare_deepspeed(self, model: PreTrainedModelWrapper):
# Adapted from accelerate: https://github.com/huggingface/accelerate/blob/739b135f8367becb67ffaada12fe76e3aa60fefd/src/accelerate/accelerator.py#L1473
deepspeed_plugin = self.accelerator.state.deepspeed_plugin
config_kwargs = deepspeed_plugin.deepspeed_config
if model is not None:
if hasattr(model, "config"):
hidden_size = (
max(model.config.hidden_sizes)
if getattr(model.config, "hidden_sizes", None)
else getattr(model.config, "hidden_size", None)
)
if hidden_size is not None and config_kwargs["zero_optimization"]["stage"] == 3:
# Note that `stage3_prefetch_bucket_size` can produce DeepSpeed messages like: `Invalidate trace cache @ step 0: expected module 1, but got module 0`
# This is expected and is not an error, see: https://github.com/microsoft/DeepSpeed/discussions/4081
config_kwargs.update(
{
"zero_optimization.reduce_bucket_size": hidden_size * hidden_size,
"zero_optimization.stage3_param_persistence_threshold": 10 * hidden_size,
"zero_optimization.stage3_prefetch_bucket_size": 0.9 * hidden_size * hidden_size,
}
)
# If ZeRO-3 is used, we shard both the active and reference model.
# Otherwise, we assume the reference model fits in memory and is initialized on each device with ZeRO disabled (stage 0)
if config_kwargs["zero_optimization"]["stage"] != 3:
config_kwargs["zero_optimization"]["stage"] = 0
model, *_ = deepspeed.initialize(model=model, config=config_kwargs)
model.eval()
return model |