|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import warnings |
|
from contextlib import contextmanager |
|
from typing import Dict, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn.utils.rnn import pad_sequence |
|
from transformers import top_k_top_p_filtering |
|
|
|
from .import_utils import is_npu_available, is_xpu_available |
|
|
|
|
|
try: |
|
from collections.abc import Mapping |
|
except ImportError: |
|
from collections.abc import Mapping |
|
|
|
|
|
WANDB_PADDING = -1 |
|
|
|
|
|
def flatten_dict(nested: Dict, sep: str = "/") -> Dict: |
|
"""Flatten dictionary and concatenate nested keys with separator.""" |
|
|
|
def recurse(nest: Dict, prefix: str, into: Dict) -> None: |
|
for k, v in nest.items(): |
|
if sep in k: |
|
raise ValueError(f"separator '{sep}' not allowed to be in key '{k}'") |
|
if isinstance(v, Mapping): |
|
recurse(v, prefix + k + sep, into) |
|
else: |
|
into[prefix + k] = v |
|
|
|
flat = {} |
|
recurse(nested, "", flat) |
|
return flat |
|
|
|
|
|
def convert_to_scalar(stats: Dict) -> Dict: |
|
""" |
|
Converts the stats from a flattened dict to single scalar dicts |
|
""" |
|
tensorboard_stats = {} |
|
for k, v in stats.items(): |
|
|
|
|
|
if (isinstance(v, torch.Tensor) or isinstance(v, np.ndarray)) and ( |
|
len(v.shape) == 0 or (len(v.shape) == 1 and v.shape[0] == 1) |
|
): |
|
v = v.item() |
|
tensorboard_stats[k] = v |
|
return tensorboard_stats |
|
|
|
|
|
def stack_dicts(stats_dicts: List[Dict]) -> Dict: |
|
"""Stack the values of a dict.""" |
|
results = dict() |
|
for k in stats_dicts[0]: |
|
stats_list = [torch.flatten(d[k]) for d in stats_dicts] |
|
results[k] = pad_sequence(stats_list, batch_first=True, padding_value=WANDB_PADDING) |
|
return results |
|
|
|
|
|
def add_suffix(input_dict: Dict, suffix: str) -> Dict: |
|
"""Add suffix to dict keys.""" |
|
return {k + suffix: v for k, v in input_dict.items()} |
|
|
|
|
|
def pad_to_size(tensor: torch.Tensor, size: int, dim: int = 1, padding: int = 50256) -> torch.Tensor: |
|
"""Pad tensor to size.""" |
|
t_size = tensor.size()[dim] |
|
if t_size == size: |
|
return tensor |
|
else: |
|
return torch.nn.functional.pad(tensor, (0, size - t_size), "constant", padding) |
|
|
|
|
|
def logprobs_from_logits(logits: torch.Tensor, labels: torch.Tensor, gather: bool = True) -> torch.Tensor: |
|
""" |
|
See: https://github.com/pytorch/pytorch/issues/563#issuecomment-330103591 |
|
""" |
|
logp = F.log_softmax(logits, dim=2) |
|
|
|
if not gather: |
|
return logp |
|
logpy = torch.gather(logp, 2, labels.unsqueeze(2)).squeeze(-1) |
|
return logpy |
|
|
|
|
|
def whiten(values: torch.Tensor, shift_mean: bool = True) -> torch.Tensor: |
|
"""Whiten values.""" |
|
mean, var = torch.mean(values), torch.var(values) |
|
whitened = (values - mean) * torch.rsqrt(var + 1e-8) |
|
if not shift_mean: |
|
whitened += mean |
|
return whitened |
|
|
|
|
|
def masked_mean(values: torch.Tensor, mask: torch.Tensor, axis: Optional[bool] = None) -> torch.Tensor: |
|
"""Compute mean of tensor with a masked values.""" |
|
if axis is not None: |
|
return (values * mask).sum(axis=axis) / mask.sum(axis=axis) |
|
else: |
|
return (values * mask).sum() / mask.sum() |
|
|
|
|
|
def masked_var(values: torch.Tensor, mask: torch.Tensor, unbiased: bool = True) -> torch.Tensor: |
|
"""Compute variance of tensor with masked values.""" |
|
mean = masked_mean(values, mask) |
|
centered_values = values - mean |
|
variance = masked_mean(centered_values**2, mask) |
|
if unbiased: |
|
mask_sum = mask.sum() |
|
if mask_sum == 0: |
|
raise ValueError( |
|
"The sum of the mask is zero, which can happen when `mini_batch_size=1`;" |
|
"try increase the `mini_batch_size` or `gradient_accumulation_steps`" |
|
) |
|
|
|
|
|
bessel_correction = mask_sum / (mask_sum - 1) |
|
variance = variance * bessel_correction |
|
return variance |
|
|
|
|
|
def masked_whiten(values: torch.Tensor, mask: torch.Tensor, shift_mean: bool = True) -> torch.Tensor: |
|
"""Whiten values with masked values.""" |
|
mean, var = masked_mean(values, mask), masked_var(values, mask) |
|
whitened = (values - mean) * torch.rsqrt(var + 1e-8) |
|
if not shift_mean: |
|
whitened += mean |
|
return whitened |
|
|
|
|
|
def clip_by_value(x: torch.Tensor, tensor_min: float, tensor_max: float) -> torch.Tensor: |
|
""" |
|
Tensor extension to torch.clamp |
|
https://github.com/pytorch/pytorch/issues/2793#issuecomment-428784713 |
|
""" |
|
clipped = torch.max(torch.min(x, tensor_max), tensor_min) |
|
return clipped |
|
|
|
|
|
def entropy_from_logits(logits: torch.Tensor) -> torch.Tensor: |
|
"""Calculate entropy from logits.""" |
|
|
|
|
|
|
|
|
|
pd = torch.nn.functional.softmax(logits, dim=-1) |
|
entropy = torch.logsumexp(logits, axis=-1) - torch.sum(pd * logits, axis=-1) |
|
return entropy |
|
|
|
|
|
def average_torch_dicts(list_of_dicts: List[Dict]) -> Dict: |
|
"""Average values of a list of dicts with torch tensors.""" |
|
average_dict = dict() |
|
for key in list_of_dicts[0].keys(): |
|
average_dict[key] = torch.mean(torch.stack([d[key] for d in list_of_dicts]), axis=0) |
|
return average_dict |
|
|
|
|
|
def stats_to_np(stats_dict: Dict) -> Dict: |
|
"""Cast all torch.tensors in dict to numpy arrays.""" |
|
new_dict = dict() |
|
for k, v in stats_dict.items(): |
|
if isinstance(v, torch.Tensor): |
|
new_dict[k] = v.detach().cpu() |
|
if new_dict[k].dtype == torch.bfloat16: |
|
new_dict[k] = new_dict[k].float() |
|
new_dict[k] = new_dict[k].numpy() |
|
else: |
|
new_dict[k] = v |
|
if np.isscalar(new_dict[k]): |
|
new_dict[k] = float(new_dict[k]) |
|
return new_dict |
|
|
|
|
|
def respond_to_batch( |
|
model: nn.Module, queries: List[torch.LongTensor], txt_len: int = 20, top_k: int = 0, top_p: float = 1.0 |
|
) -> torch.LongTensor: |
|
"""Sample text from language model.""" |
|
input_ids = queries |
|
for _i in range(txt_len): |
|
|
|
outputs = model(input_ids) |
|
next_token_logits = outputs[0][:, -1, :] |
|
next_token_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p) |
|
|
|
probs = F.softmax(next_token_logits, dim=-1) |
|
next_token = torch.multinomial(probs, num_samples=1).squeeze(1) |
|
input_ids = torch.cat([input_ids, next_token.unsqueeze(-1)], dim=-1) |
|
return input_ids[:, -txt_len:] |
|
|
|
|
|
def set_seed(seed: int) -> None: |
|
""" |
|
Helper function for reproducible behavior to set the seed in `random`, `numpy`, and `torch`. |
|
|
|
Args: |
|
seed (`int`): The seed to set. |
|
""" |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
if is_xpu_available(): |
|
torch.xpu.manual_seed_all(seed) |
|
elif is_npu_available(): |
|
torch.npu.manual_seed_all(seed) |
|
else: |
|
torch.cuda.manual_seed_all(seed) |
|
|
|
|
|
class LengthSampler: |
|
""" |
|
Samples a length |
|
""" |
|
|
|
def __init__(self, min_value: int, max_value: int): |
|
self.values = list(range(min_value, max_value)) |
|
|
|
def __call__(self) -> int: |
|
return np.random.choice(self.values) |
|
|
|
|
|
class PPODecorators: |
|
optimize_device_cache = False |
|
|
|
@classmethod |
|
@contextmanager |
|
def empty_device_cache(cls): |
|
yield |
|
if cls.optimize_device_cache: |
|
if is_xpu_available(): |
|
gc.collect() |
|
torch.xpu.empty_cache() |
|
gc.collect() |
|
elif is_npu_available(): |
|
gc.collect() |
|
torch.npu.empty_cache() |
|
gc.collect() |
|
elif torch.cuda.is_available(): |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
|
|
def randn_tensor( |
|
shape: Union[Tuple, List], |
|
generator: Optional[Union[List[torch.Generator], torch.Generator]] = None, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
layout: Optional[torch.layout] = None, |
|
) -> torch.Tensor: |
|
"""A helper function to create random tensors on the desired `device` with the desired `dtype`. When |
|
passing a list of generators, you can seed each batch size individually. If CPU generators are passed, the tensor |
|
is always created on the CPU. |
|
""" |
|
|
|
rand_device = device |
|
batch_size = shape[0] |
|
|
|
layout = layout or torch.strided |
|
device = device or torch.device("cpu") |
|
|
|
if generator is not None: |
|
gen_device_type = generator.device.type if not isinstance(generator, list) else generator[0].device.type |
|
if gen_device_type != device.type and gen_device_type == "cpu": |
|
rand_device = "cpu" |
|
if device != "mps": |
|
warnings.warn( |
|
f"The passed generator was created on 'cpu' even though a tensor on {device} was expected." |
|
f" Tensors will be created on 'cpu' and then moved to {device}. Note that one can probably" |
|
f" slighly speed up this function by passing a generator that was created on the {device} device." |
|
) |
|
elif gen_device_type != device.type and gen_device_type == "cuda": |
|
raise ValueError(f"Cannot generate a {device} tensor from a generator of type {gen_device_type}.") |
|
|
|
|
|
if isinstance(generator, list) and len(generator) == 1: |
|
generator = generator[0] |
|
|
|
if isinstance(generator, list): |
|
shape = (1,) + shape[1:] |
|
latents = [ |
|
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype, layout=layout) |
|
for i in range(batch_size) |
|
] |
|
latents = torch.cat(latents, dim=0).to(device) |
|
else: |
|
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype, layout=layout).to(device) |
|
|
|
return latents |