GPT2-IMDB-Sentiment-FineTuned-with-PPO / ppo /ppo_trainer_original.py
pt-sk's picture
Upload 4 files
18fc02b verified
raw
history blame
62.8 kB
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import math
import os
import time
import typing
import warnings
from contextlib import nullcontext
from typing import Callable, List, Optional, Union
import datasets
import numpy as np
import torch
import torch.nn.functional as F
from accelerate import Accelerator
from accelerate.utils import ProjectConfiguration, gather_object, is_deepspeed_available
from datasets import Dataset
from huggingface_hub import whoami
from packaging import version
from torch.optim import Adam
from transformers import (
DataCollatorForLanguageModeling,
PreTrainedTokenizer,
PreTrainedTokenizerBase,
PreTrainedTokenizerFast,
)
from ..core import (
WANDB_PADDING,
PPODecorators,
clip_by_value,
convert_to_scalar,
entropy_from_logits,
flatten_dict,
logprobs_from_logits,
masked_mean,
masked_var,
masked_whiten,
set_seed,
stack_dicts,
stats_to_np,
)
from ..import_utils import is_npu_available, is_torch_greater_2_0, is_xpu_available
from ..models import SUPPORTED_ARCHITECTURES, PreTrainedModelWrapper, create_reference_model
from . import AdaptiveKLController, BaseTrainer, FixedKLController, PPOConfig, RunningMoments
if is_deepspeed_available():
import deepspeed
MODEL_CARD_TEMPLATE = """---
license: apache-2.0
tags:
- trl
- ppo
- transformers
- reinforcement-learning
---
# {model_name}
This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to
guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
## Usage
To use this model for inference, first install the TRL library:
```bash
python -m pip install trl
```
You can then generate text as follows:
```python
from transformers import pipeline
generator = pipeline("text-generation", model="{model_id}")
outputs = generator("Hello, my llama is cute")
```
If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
```python
from transformers import AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
tokenizer = AutoTokenizer.from_pretrained("{model_id}")
model = AutoModelForCausalLMWithValueHead.from_pretrained("{model_id}")
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])
```
"""
class PPOTrainer(BaseTrainer):
"""
The PPOTrainer uses Proximal Policy Optimization to optimise language models.
Note, this trainer is heavily inspired by the original OpenAI learning to summarize work here:
https://github.com/openai/summarize-from-feedback
Attributes:
**config** (`PPOConfig`) -- Configuration object for PPOTrainer. Check the documentation of `PPOConfig` for more
details.
**model** (`PreTrainedModelWrapper`) -- Model to be optimized, Hugging Face transformer model with a value head.
Check the documentation of `PreTrainedModelWrapper` for more details.
**ref_model** (`PreTrainedModelWrapper`, *optional*) -- Reference model to be used for KL penalty, Hugging Face
transformer model with a casual language modelling head. Check the documentation of `PreTrainedModelWrapper`
for more details. If no reference model is provided, the trainer will create a reference model with the same
architecture as the model to be optimized with shared layers.
**tokenizer** (`PreTrainedTokenizerBase`) -- Tokenizer to be used for encoding the
data. Check the documentation of `transformers.PreTrainedTokenizer` and
`transformers.PreTrainedTokenizerFast` for more details.
**dataset** (Union[`torch.utils.data.Dataset`, `datasets.Dataset`], *optional*) -- PyTorch dataset or Hugging
Face dataset. This is used to create a PyTorch dataloader. If no dataset is provided, the dataloader must be
created outside the trainer users needs to design their own dataloader and make sure the batch
size that is used is the same as the one specified in the configuration object.
**optimizer** (`torch.optim.Optimizer`, *optional*) -- Optimizer to be used for training. If no optimizer is
provided, the trainer will create an Adam optimizer with the learning rate specified in the configuration
object.
**data_collator** (DataCollatorForLanguageModeling, *optional*) -- Data collator to be used for training and
passed along the dataloader
**num_shared_layers** (int, *optional*) -- Number of layers to be shared between the model and the reference
model, if no reference model is passed. If no number is provided, all the layers will be shared.
**lr_scheduler** (`torch.optim.lr_scheduler`, *optional*) -- Learning rate scheduler to be used for training.
"""
_tag_names = ["trl", "ppo"]
def __init__(
self,
config: Optional[PPOConfig] = None,
model: Optional[PreTrainedModelWrapper] = None,
ref_model: Optional[PreTrainedModelWrapper] = None,
tokenizer: Optional[PreTrainedTokenizerBase] = None,
dataset: Optional[Union[torch.utils.data.Dataset, Dataset]] = None,
optimizer: Optional[torch.optim.Optimizer] = None,
data_collator: Optional[typing.Callable] = None,
num_shared_layers: Optional[int] = None,
lr_scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
):
"""
Initialize PPOTrainer.
Args:
config (`PPOConfig`):
Configuration object for PPOTrainer. Check the documentation of `PPOConfig` for more details.
model (`PreTrainedModelWrapper`):
Hugging Face transformer model with a value head.
ref_model (`PreTrainedModelWrapper`):
Hugging Face transformer model with a casual language modelling head. Used for KL penalty
tokenizer (`transformers.PreTrainedTokenizerBase`):
Hugging Face tokenizer
dataset (Optional[Union[`torch.utils.data.Dataset`, `datasets.Dataset`]]):
PyTorch dataset or Hugging Face dataset. If a Hugging Face dataset is passed, the dataset
will be preprocessed by removing the columns that are not used by the model. If none is passed,
a warning will be raised in a multi-GPU setting.
optimizer (Optional[`torch.optim.Optimizer`]):
Optimizer used for training. If `None`, the `Adam` is used as default.
data_collator (Optional[function]):
Data collator function.
num_shared_layers (Optional[int]):
Number of shared layers between the model and the reference model. If `None`, all layers are shared.
used only if `ref_model` is `None`.
lr_scheduler (Optional[`torch.optim.lr_scheduler`]):
Learning rate scheduler used for training.
"""
super().__init__(config)
# initial seed for reproducible experiments
set_seed(config.seed)
# Step 0: check positional arguments validity
if not isinstance(config, PPOConfig):
raise ValueError(f"config must be a PPOConfig, got {type(config)}")
if not isinstance(tokenizer, (PreTrainedTokenizerBase)):
raise ValueError(
f"tokenizer must be a PreTrainedTokenizerBase like a PreTrainedTokenizer or a PreTrainedTokenizerFast, got {type(tokenizer)}"
)
if not isinstance(model, (SUPPORTED_ARCHITECTURES)):
raise ValueError(
f"model must be a PreTrainedModelWrapper, got {type(model)} - supported architectures are: {SUPPORTED_ARCHITECTURES}"
)
# Step 1: Initialize Accelerator
self.accelerator = Accelerator(
log_with=config.log_with,
gradient_accumulation_steps=config.gradient_accumulation_steps,
project_config=ProjectConfiguration(**config.project_kwargs),
**config.accelerator_kwargs,
)
# Step 1.1 Runtime variables filled by the accelerator
config.world_size = self.accelerator.num_processes
config.global_backward_batch_size = config.backward_batch_size * config.world_size
config.global_batch_size = config.batch_size * config.world_size
self.model = model
self.model_params = filter(lambda p: p.requires_grad, self.model.parameters())
self.is_encoder_decoder = hasattr(self.model, "is_encoder_decoder")
self.is_peft_model = getattr(self.model, "is_peft_model", False)
config.is_encoder_decoder = self.is_encoder_decoder
config.is_peft_model = self.is_peft_model
is_using_tensorboard = config.log_with is not None and config.log_with == "tensorboard"
self.accelerator.init_trackers(
config.tracker_project_name,
config=dict(trl_ppo_trainer_config=config.to_dict()) if not is_using_tensorboard else config.to_dict(),
init_kwargs=config.tracker_kwargs,
)
self.is_using_text_environment = getattr(config, "use_text_environment", False)
if isinstance(ref_model, SUPPORTED_ARCHITECTURES):
self.ref_model = ref_model
if num_shared_layers is not None:
warnings.warn(
"num_shared_layers is ignored when ref_model is provided. Two different models are used for the "
"model and the reference model and no layers are shared.",
UserWarning,
)
elif ref_model is None and not self.is_peft_model:
self.ref_model = create_reference_model(self.model, num_shared_layers=num_shared_layers)
elif self.is_peft_model:
self.ref_model = None
else:
raise ValueError(
f"ref_model must be a PreTrainedModelWrapper or `None`, got {type(ref_model)} - supported "
f"architectures are: {SUPPORTED_ARCHITECTURES} "
)
self.optional_peft_ctx = (
self.accelerator.unwrap_model(self.model).pretrained_model.disable_adapter
if self.is_peft_model
else nullcontext
)
if not (isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast)):
raise ValueError(
"tokenizer must be a transformers.PreTrainedTokenizer or transformers.PreTrainedTokenizerFast"
)
self.tokenizer = tokenizer
if dataset is not None and not (isinstance(dataset, torch.utils.data.Dataset) or isinstance(dataset, Dataset)):
raise ValueError("dataset must be a torch.utils.data.Dataset or datasets.Dataset")
elif dataset is None:
warnings.warn(
"No dataset is provided. Make sure to set config.batch_size to the correct value before training.",
UserWarning,
)
self.dataset = dataset
self._signature_columns = None
if self.dataset is not None:
self.dataloader = self.prepare_dataloader(self.dataset, data_collator)
elif self.dataset is None and self.accelerator.num_processes > 1:
warnings.warn(
"No dataset is provided. In a multi-GPU setting, this will lead to an error. You should"
" prepare your dataloader yourself with `dataloader = ppo_trainer.accelerator.prepare(dataloader)`"
" and using `torch.utils.data.DataLoader`, or pass a dataset to the `PPOTrainer`. Please "
" refer to the documentation for more details.",
UserWarning,
)
self.dataloader = None
else:
self.dataloader = None
# Step 3: Initialize optimizer and data collator
self.data_collator = DataCollatorForLanguageModeling(self.tokenizer, mlm=False)
if optimizer is None:
self.optimizer = Adam(
filter(lambda p: p.requires_grad, self.model.parameters()),
lr=self.config.learning_rate,
)
else:
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
if self.lr_scheduler is not None:
lr_scheduler_class = (
torch.optim.lr_scheduler._LRScheduler
if not is_torch_greater_2_0()
else torch.optim.lr_scheduler.LRScheduler
)
if not isinstance(self.lr_scheduler, lr_scheduler_class):
raise ValueError(
"lr_scheduler must be a torch.optim.lr_scheduler._LRScheduler or torch.optim.lr_scheduler.LRScheduler (for torch >= 2.0)"
)
if self.config.adap_kl_ctrl:
self.kl_ctl = AdaptiveKLController(self.config.init_kl_coef, self.config.target, self.config.horizon)
else:
self.kl_ctl = FixedKLController(self.config.init_kl_coef)
# Safety checkers for DS integration
is_deepspeed_used = self.accelerator.distributed_type == "DEEPSPEED" and hasattr(
self.accelerator.state, "deepspeed_plugin"
)
(
self.model,
self.optimizer,
self.data_collator,
self.dataloader,
self.lr_scheduler,
) = self.accelerator.prepare(
self.model,
self.optimizer,
self.data_collator,
self.dataloader,
self.lr_scheduler,
)
if is_deepspeed_used:
# Quantized models are already set on the correct device
if not self.is_peft_model and not (
getattr(self.ref_model.pretrained_model, "is_loaded_in_8bit", False)
or getattr(self.ref_model.pretrained_model, "is_loaded_in_4bit", False)
):
self.ref_model = self._prepare_deepspeed(self.ref_model)
else:
self.ref_model = self.accelerator.prepare(self.ref_model)
# In a distributed setup, only logging needs to be performed on the main process
# check: https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html
# or: https://discuss.pytorch.org/t/use-distributed-data-parallel-correctly/82500/11
self.is_distributed = self.accelerator.num_processes > 1
# init the current step
self.current_step = 0
# init variables for pushing model to hub
if config.push_to_hub_if_best_kwargs:
if "repo_id" not in config.push_to_hub_if_best_kwargs:
raise ValueError("You have to specify repo_id in order to push the model to the hub!")
self.push_to_hub_kwargs = config.push_to_hub_if_best_kwargs
self.compare_step = 0
self.highest_reward = torch.tensor(-float("inf"))
# post process for PP
if not getattr(self.model, "is_sequential_parallel", False):
self.current_device = self.accelerator.device
else:
if is_xpu_available():
self.current_device = torch.device("xpu:0")
elif is_npu_available():
self.current_device = torch.device("npu:0")
else:
self.current_device = torch.device("cuda:0")
PPODecorators.optimize_device_cache = self.config.optimize_device_cache
self.running = RunningMoments(self.accelerator)
def _filter_kwargs(self, kwargs, target_func):
"""
filter the keyword arguments that are supported by the target function.
Args:
kwargs (dict):
Keyword arguments
target_func (function):
Target function
"""
return {k: v for k, v in kwargs.items() if k in inspect.signature(target_func).parameters.keys()}
def prepare_dataloader(self, dataset: Union[torch.utils.data.Dataset, Dataset], data_collator=None):
"""
Prepare the dataloader for training.
Args:
dataset (Union[`torch.utils.data.Dataset`, `datasets.Dataset`]):
PyTorch dataset or Hugging Face dataset. If a Hugging Face dataset is passed, the dataset
will be preprocessed by removing the columns that are not used by the model.
data_collator (Optional[function]):
Data collator function.
Returns:
`torch.utils.data.DataLoader`: PyTorch dataloader
"""
if isinstance(dataset, Dataset):
dataset = self._remove_unused_columns(dataset)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=self.config.batch_size,
collate_fn=data_collator,
shuffle=True,
drop_last=True,
)
return dataloader
# Adapted from transformers.Trainer._set_signature_columns_if_needed
def _set_signature_columns_if_needed(self):
if self._signature_columns is None:
# Inspect model forward signature to keep only the arguments it accepts.
signature = inspect.signature(self.model.forward)
self._signature_columns = list(signature.parameters.keys())
# label => sentiment | we need query and response for logging purpose
self._signature_columns += ["label", "query", "response"]
# Adapted from transformers.Trainer._remove_unused_columns
def _remove_unused_columns(self, dataset: "Dataset"):
if not self.config.remove_unused_columns:
return dataset
self._set_signature_columns_if_needed()
signature_columns = self._signature_columns
ignored_columns = list(set(dataset.column_names) - set(signature_columns))
columns = [k for k in signature_columns if k in dataset.column_names]
if version.parse(datasets.__version__) < version.parse("1.4.0"):
dataset.set_format(
type=dataset.format["type"],
columns=columns,
format_kwargs=dataset.format["format_kwargs"],
)
return dataset
else:
return dataset.remove_columns(ignored_columns)
def generate(
self,
query_tensor: Union[torch.Tensor, List[torch.Tensor]],
length_sampler: Optional[Callable] = None,
batch_size: int = 4,
return_prompt: bool = True,
generate_ref_response: bool = False,
**generation_kwargs,
):
"""
Generate response with the model given the query tensor.
call the `generate` method of the model.
Args:
query_tensor (`torch.LongTensor`):
A tensor of shape (`seq_len`) containing query tokens or a list of tensors of shape (`seq_len`).
length_sampler (`Callable`, *optional*):
Callable that returns the number of newly generated tokens.
batch_size (`int`, *optional):
Batch size used for generation, defaults to `4`.
return_prompt (`bool`, *optional*):
If set to `False` the prompt is not returned but only the newly generated tokens, defaults to `True`.
generate_ref_response (`bool`, *optional*):
If set to `True` the reference response is also generated, defaults to `False`.
generation_kwargs (dict[str, Any]):
Keyword arguments for generation.
Returns:
`torch.LongTensor`: A tensor of shape (`batch_size`, `gen_len`) containing response tokens.
"""
if generate_ref_response:
ref_model = self.model if self.is_peft_model else self.ref_model
if isinstance(query_tensor, List):
response = self._generate_batched(
self.model,
query_tensor,
length_sampler=length_sampler,
batch_size=batch_size,
return_prompt=return_prompt,
**generation_kwargs,
)
if generate_ref_response:
with self.optional_peft_ctx():
ref_response = self._generate_batched(
ref_model,
query_tensor,
length_sampler=length_sampler,
batch_size=batch_size,
return_prompt=return_prompt,
**generation_kwargs,
)
else:
if len(query_tensor.shape) == 2:
raise ValueError(
"query_tensor must be a tensor of shape (`seq_len`) or a list of tensors of shape (`seq_len`)"
)
if length_sampler is not None:
generation_kwargs["max_new_tokens"] = length_sampler()
response = self.accelerator.unwrap_model(self.model).generate(
input_ids=query_tensor.unsqueeze(dim=0), **generation_kwargs
)
if generate_ref_response:
with self.optional_peft_ctx():
ref_response = ref_model.generate(input_ids=query_tensor.unsqueeze(dim=0), **generation_kwargs)
if not return_prompt and not self.is_encoder_decoder:
response = response[:, query_tensor.shape[0] :]
if generate_ref_response:
ref_response = ref_response[:, query_tensor.shape[0] :]
if generate_ref_response:
return response, ref_response
return response
def _generate_batched(
self,
model: PreTrainedModelWrapper,
query_tensors: List[torch.Tensor],
length_sampler: Optional[Callable] = None,
batch_size: int = 4,
return_prompt: bool = True,
pad_to_multiple_of: Optional[int] = None,
remove_padding: bool = True,
**generation_kwargs,
):
outputs = []
padding_side_default = self.tokenizer.padding_side
if not self.is_encoder_decoder:
self.tokenizer.padding_side = "left"
# in case we have fewer examples than bs
batch_size = min(len(query_tensors), batch_size)
for i in range(0, len(query_tensors), batch_size):
if length_sampler is not None:
generation_kwargs["max_new_tokens"] = length_sampler()
# prevent overflow if query tensors are not even multiple of bs
end_index = min(len(query_tensors), i + batch_size)
batch = query_tensors[i:end_index]
batch_mask = [torch.ones_like(element) for element in batch]
inputs = {"input_ids": batch, "attention_mask": batch_mask}
padded_inputs = self.tokenizer.pad(
inputs,
padding=True,
max_length=None,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors="pt",
).to(self.current_device)
generations = self.accelerator.unwrap_model(model).generate(**padded_inputs, **generation_kwargs)
for generation, mask in zip(generations, padded_inputs["attention_mask"]):
if not self.is_encoder_decoder:
output = generation[(1 - mask).sum() :] # remove padding
else:
output = generation
if not return_prompt and not self.is_encoder_decoder:
output = output[(mask).sum() :] # remove prompt
if remove_padding and self.tokenizer.eos_token_id in output:
pad_mask = output == self.tokenizer.eos_token_id
pad_start = torch.nonzero(pad_mask, as_tuple=False)[0, 0].item()
output = output[: pad_start + 1] # keep the eos token at the end
outputs.append(output)
self.tokenizer.padding_side = padding_side_default
return outputs
def _step_safety_checker(
self,
batch_size: int,
queries: List[torch.LongTensor],
responses: List[torch.LongTensor],
scores: List[torch.FloatTensor],
masks: Optional[List[torch.LongTensor]] = None,
):
"""
Check if the input data is valid for training.
Args:
batch_size (int):
Batch size from the config file.
queries (List[`torch.LongTensor`]):
List of tensors containing the encoded queries of shape (`query_length`)
responses (List[`torch.LongTensor`]):
List of tensors containing the encoded responses of shape (`response_length`)
scores (List[`torch.FloatTensor`]):
List of tensors containing the scores.
masks (List[`torch.LongTensor`], *optional*):
list of optional tensors containing the masks of shape (`query_length` + `response_length`)
Returns:
`tuple`: The input processed data.
"""
for name, tensor_list in zip(["queries", "responses", "scores"], [queries, responses, scores]):
if not isinstance(tensor_list, list):
raise ValueError(f"{name} must be a list of tensors - got {type(tensor_list)}")
if not isinstance(tensor_list[0], torch.Tensor):
raise ValueError(f"Elements in {name} must be tensors - got {type(tensor_list[0])}")
if batch_size is not None and len(tensor_list) != batch_size:
raise ValueError(
f"Batch size ({batch_size}) does not match number of examples - but got {len(tensor_list)} for: {name}"
)
# add queries, scores and responses on the correct device
queries = [tensor.to(self.current_device) for tensor in queries]
responses = [tensor.to(self.current_device) for tensor in responses]
scores = [tensor.to(self.current_device) for tensor in scores]
masks = [tensor.to(self.current_device) for tensor in masks] if masks is not None else None
# squeeze scores if needed
for i, score in enumerate(scores):
if score.dim() > 1:
raise ValueError(f"Scores must be 1-dimensional - got {score.dim()} for {score}")
elif score.dim() == 1:
scores[i] = score.squeeze()
return queries, responses, scores, masks
@PPODecorators.empty_device_cache()
def step(
self,
queries: List[torch.LongTensor],
responses: List[torch.LongTensor],
scores: List[torch.FloatTensor],
response_masks: Optional[List[torch.LongTensor]] = None,
):
"""
Run a PPO optimisation step given a list of queries, model responses, and rewards.
Args:
queries (List[`torch.LongTensor`]):
List of tensors containing the encoded queries of shape (`query_length`)
responses (List[`torch.LongTensor`]):
List of tensors containing the encoded responses of shape (`response_length`)
scores (List[`torch.FloatTensor`]):
List of tensors containing the scores.
response_masks (List[`torch.FloatTensor`], *optional*)):
List of tensors containing masks of the response tokens.
Returns:
`dict[str, Any]`: A summary of the training statistics
"""
bs = self.config.batch_size
queries, responses, scores, response_masks = self._step_safety_checker(
bs, queries, responses, scores, response_masks
)
scores = torch.tensor(scores, device=self.current_device)
if self.config.use_score_scaling:
# Score scaling
scores_mean, scores_std = self.running.update(scores)
tensor_to_kwargs = dict(dtype=scores.dtype, device=scores.device)
score_scaling_factor = self.running.std.to(**tensor_to_kwargs) + torch.finfo(scores.dtype).eps
if self.config.use_score_norm:
scores = (scores - self.running.mean.to(**tensor_to_kwargs)) / score_scaling_factor
else:
scores /= score_scaling_factor
if self.config.score_clip is not None:
# Score clipping
scores_dtype = scores.dtype
scores = torch.clip(scores.float(), -self.config.score_clip, self.config.score_clip).to(dtype=scores_dtype)
# if we want to push best model to the hub
if hasattr(self, "highest_reward"):
if self.compare_step % self.config.compare_steps == 0:
curr_mean_reward = scores.mean()
# if the best reward ever seen
if curr_mean_reward > self.highest_reward:
self.highest_reward = curr_mean_reward
# push model to hub
self.push_to_hub(**self.push_to_hub_kwargs)
self.compare_step += 1
timing = dict()
t0 = time.time()
t = time.time()
model_inputs = self.prepare_model_inputs(queries, responses)
if self.is_distributed:
pad_first = self.tokenizer.padding_side == "left"
model_inputs["input_ids"] = self.accelerator.pad_across_processes(
model_inputs["input_ids"],
dim=1,
pad_index=self.tokenizer.pad_token_id,
pad_first=pad_first,
)
model_inputs["attention_mask"] = self.accelerator.pad_across_processes(
model_inputs["attention_mask"], dim=1, pad_index=0, pad_first=pad_first
)
if self.is_encoder_decoder:
model_inputs["decoder_input_ids"] = self.accelerator.pad_across_processes(
model_inputs["decoder_input_ids"],
dim=1,
pad_index=self.tokenizer.pad_token_id,
pad_first=pad_first,
)
model_inputs["decoder_attention_mask"] = self.accelerator.pad_across_processes(
model_inputs["decoder_attention_mask"],
dim=1,
pad_index=0,
pad_first=pad_first,
)
model_inputs_names = list(model_inputs.keys())
full_kl_penalty = self.config.kl_penalty == "full"
with torch.no_grad():
all_logprobs, logits_or_none, values, masks = self.batched_forward_pass(
self.model,
queries,
responses,
model_inputs,
response_masks=response_masks,
return_logits=full_kl_penalty,
)
with self.optional_peft_ctx():
ref_logprobs, ref_logits_or_none, _, _ = self.batched_forward_pass(
self.model if self.is_peft_model else self.ref_model,
queries,
responses,
model_inputs,
return_logits=full_kl_penalty,
)
timing["time/ppo/forward_pass"] = time.time() - t
with torch.no_grad():
t = time.time()
if full_kl_penalty:
active_full_logprobs = logprobs_from_logits(logits_or_none, None, gather=False)
ref_full_logprobs = logprobs_from_logits(ref_logits_or_none, None, gather=False)
rewards, non_score_reward, kls = self.compute_rewards(
scores, active_full_logprobs, ref_full_logprobs, masks
)
else:
rewards, non_score_reward, kls = self.compute_rewards(scores, all_logprobs, ref_logprobs, masks)
timing["time/ppo/compute_rewards"] = time.time() - t
t = time.time()
values, advantages, returns = self.compute_advantages(values, rewards, masks)
timing["time/ppo/compute_advantages"] = time.time() - t
# upcast to float32 to avoid dataset issues
batch_dict = {
"queries": queries,
"responses": responses,
"logprobs": all_logprobs.to(torch.float32),
"values": values.to(torch.float32),
"masks": masks,
"advantages": advantages,
"returns": returns,
}
batch_dict.update(model_inputs)
t = time.time()
all_stats = []
early_stop = False
for _ in range(self.config.ppo_epochs):
if early_stop:
break
b_inds = np.random.permutation(bs)
for backward_batch_start in range(0, bs, self.config.backward_batch_size):
backward_batch_end = backward_batch_start + self.config.backward_batch_size
backward_batch_inds = b_inds[backward_batch_start:backward_batch_end]
for mini_batch_start in range(0, self.config.backward_batch_size, self.config.mini_batch_size):
mini_batch_end = mini_batch_start + self.config.mini_batch_size
mini_batch_inds = backward_batch_inds[mini_batch_start:mini_batch_end]
mini_batch_dict = {
"logprobs": batch_dict["logprobs"][mini_batch_inds],
"values": batch_dict["values"][mini_batch_inds],
"masks": batch_dict["masks"][mini_batch_inds],
# hacks: the queries and responses are ragged.
"queries": [batch_dict["queries"][i] for i in mini_batch_inds],
"responses": [batch_dict["responses"][i] for i in mini_batch_inds],
"advantages": batch_dict["advantages"][mini_batch_inds],
"returns": batch_dict["returns"][mini_batch_inds],
}
for k in model_inputs_names:
mini_batch_dict[k] = batch_dict[k][mini_batch_inds]
with self.accelerator.accumulate(self.model):
model_inputs = {k: mini_batch_dict[k] for k in model_inputs_names}
logprobs, logits, vpreds, _ = self.batched_forward_pass(
self.model,
mini_batch_dict["queries"],
mini_batch_dict["responses"],
model_inputs,
return_logits=True,
)
train_stats = self.train_minibatch(
mini_batch_dict["logprobs"],
mini_batch_dict["values"],
logprobs,
logits,
vpreds,
mini_batch_dict["masks"],
mini_batch_dict["advantages"],
mini_batch_dict["returns"],
)
all_stats.append(train_stats)
# typically, early stopping is done at the epoch level
if self.config.early_stopping:
policykl = train_stats["policy/policykl"]
early_stop = self._early_stop(policykl)
if early_stop:
break
timing["time/ppo/optimize_step"] = time.time() - t
t = time.time()
train_stats = stack_dicts(all_stats)
# reshape advantages/ratios such that they are not averaged.
train_stats["policy/advantages"] = torch.flatten(train_stats["policy/advantages"]).unsqueeze(0)
train_stats["policy/advantages"] = torch.nan_to_num(train_stats["policy/advantages"], WANDB_PADDING)
train_stats["policy/ratio"] = torch.flatten(train_stats["policy/ratio"]).unsqueeze(0)
stats = self.record_step_stats(
scores=scores,
logprobs=all_logprobs,
ref_logprobs=ref_logprobs,
non_score_reward=non_score_reward,
train_stats=train_stats,
kl_coef=self.kl_ctl.value,
masks=masks,
queries=queries,
responses=responses,
kls=kls,
)
# Gather/Reduce stats from all processes
if self.is_distributed:
stats = self.gather_stats(stats)
stats = stats_to_np(stats)
timing["time/ppo/calc_stats"] = time.time() - t
stats["ppo/learning_rate"] = self.optimizer.param_groups[0]["lr"]
# Update the KL control - multiply the batch_size by the number of processes
self.kl_ctl.update(
stats["objective/kl"],
self.config.batch_size * self.accelerator.num_processes,
)
# Log the total ppo time
timing["time/ppo/total"] = time.time() - t0
stats.update(timing)
# post-process stats for tensorboard and other loggers
if self.config.log_with != "wandb":
stats = convert_to_scalar(stats)
if self.lr_scheduler is not None:
self.lr_scheduler.step()
return stats
def _early_stop(self, policykl):
r"""
Handles the early stopping logic. If the policy KL is greater than the target KL, then the gradient is zeroed and
the optimization step is skipped.
This also handles the multi-gpu case where the policy KL is averaged across all processes.
Args:
policy_kl (torch.Tensor):
the policy KL
Returns:
`bool`: whether to early stop or not
"""
early_stop = False
if not self.config.early_stopping:
return early_stop
if not self.is_distributed and policykl > 1.5 * self.config.target_kl:
self.optimizer.zero_grad()
early_stop = True
elif self.is_distributed:
import torch.distributed as dist
# Wait for all processes to finish
dist.barrier()
# all gather the policykl
dist.all_reduce(policykl, dist.ReduceOp.SUM)
policykl /= self.accelerator.num_processes
if policykl > 1.5 * self.config.target_kl:
self.optimizer.zero_grad()
early_stop = True
return early_stop
def gather_stats(self, stats):
"""
Gather stats from all processes. Useful in the context of distributed training.
Args:
stats (dict[str, Any]):
a dictionary of stats to be gathered. The stats should contain torch tensors.
Returns:
`dict[str, Any]`: A dictionary of stats with the tensors gathered.
"""
import torch.distributed as dist
# Wait for all processes to finish
dist.barrier()
for k, v in stats.items():
if isinstance(v, torch.Tensor):
dist.all_reduce(v.to(self.accelerator.device), dist.ReduceOp.SUM)
v /= self.accelerator.num_processes
stats[k] = v
return stats
def prepare_model_inputs(self, queries: torch.Tensor, responses: torch.Tensor):
if self.is_encoder_decoder:
input_data = self.data_collator(
[{"input_ids": q, "attention_mask": torch.ones_like(q)} for q in queries]
).to(self.current_device)
decoder_inputs = self.data_collator(
[{"input_ids": r, "attention_mask": torch.ones_like(r)} for r in responses]
).to(self.current_device)
input_data["decoder_input_ids"] = decoder_inputs["input_ids"]
input_data["decoder_attention_mask"] = decoder_inputs["attention_mask"]
else:
input_ids = [torch.cat([q, r]) for q, r in zip(queries, responses)]
input_data = self.data_collator(
[{"input_ids": ids, "attention_mask": torch.ones_like(ids)} for ids in input_ids]
).to(self.current_device)
input_data.pop("labels", None) # we don't want to compute LM losses
return input_data
@PPODecorators.empty_device_cache()
def batched_forward_pass(
self,
model: PreTrainedModelWrapper,
queries: torch.Tensor,
responses: torch.Tensor,
model_inputs: dict,
return_logits: bool = False,
response_masks: Optional[torch.Tensor] = None,
):
"""
Calculate model outputs in multiple batches.
Args:
queries (`torch.LongTensor`):
List of tensors containing the encoded queries, shape (`batch_size`, `query_length`)
responses (`torch.LongTensor`):
List of tensors containing the encoded responses, shape (`batch_size`, `response_length`)
return_logits (`bool`, *optional*, defaults to `False`):
Whether to return all_logits. Set to `False` if logits are not needed to reduce memory consumption.
Returns:
(tuple):
- all_logprobs (`torch.FloatTensor`): Log probabilities of the responses,
shape (`batch_size`, `response_length`)
- all_ref_logprobs (`torch.FloatTensor`): Log probabilities of the responses,
shape (`batch_size`, `response_length`)
- all_values (`torch.FloatTensor`): Values of the responses, shape (`batch_size`, `response_length`)
"""
bs = len(queries)
fbs = self.config.mini_batch_size
all_logprobs = []
all_logits = []
all_masks = []
all_values = []
model.eval()
for i in range(math.ceil(bs / fbs)):
input_kwargs = {key: value[i * fbs : (i + 1) * fbs] for key, value in model_inputs.items()}
query_batch = queries[i * fbs : (i + 1) * fbs]
response_batch = responses[i * fbs : (i + 1) * fbs]
if response_masks is not None:
response_masks_batch = response_masks[i * fbs : (i + 1) * fbs]
logits, _, values = model(**input_kwargs)
if self.is_encoder_decoder:
input_ids = input_kwargs["decoder_input_ids"]
attention_mask = input_kwargs["decoder_attention_mask"]
else:
input_ids = input_kwargs["input_ids"]
attention_mask = input_kwargs["attention_mask"]
logprobs = logprobs_from_logits(logits[:, :-1, :], input_ids[:, 1:])
masks = torch.zeros_like(attention_mask)
masks[:, :-1] = attention_mask[:, 1:]
for j in range(len(query_batch)):
if self.is_encoder_decoder:
# Decoder sentence starts always in the index 1 after padding in the Enc-Dec Models
start = 1
end = attention_mask[j, :].sum() - 1
else:
start = len(query_batch[j]) - 1 # logprobs starts from the second query token
if attention_mask[j, 0] == 0: # offset left padding
start += attention_mask[j, :].nonzero()[0]
end = start + len(response_batch[j])
if response_masks is not None:
response_masks_batch[j] = torch.cat(
(torch.zeros_like(query_batch[j]), response_masks_batch[j])
)[1:]
masks[j, :start] = 0
masks[j, end:] = 0
if response_masks is not None:
masks[j, start:end] = masks[j, start:end] * response_masks_batch[j][start:end]
if return_logits:
all_logits.append(logits)
else:
del logits
all_values.append(values)
all_logprobs.append(logprobs)
all_masks.append(masks)
return (
torch.cat(all_logprobs),
torch.cat(all_logits)[:, :-1] if return_logits else None,
torch.cat(all_values)[:, :-1],
torch.cat(all_masks)[:, :-1],
)
@PPODecorators.empty_device_cache()
def train_minibatch(
self,
old_logprobs: torch.FloatTensor,
values: torch.FloatTensor,
logprobs: torch.FloatTensor,
logits: torch.FloatTensor,
vpreds: torch.FloatTensor,
mask: torch.LongTensor,
advantages: torch.FloatTensor,
returns: torch.FloatTensor,
):
"""
Train one PPO minibatch
Args:
logprobs (`torch.FloatTensor`):
Log probabilities of the model, shape [mini_batch_size, response_length]
values (`torch.FloatTensor`):
Values of the value head, shape [mini_batch_size, response_length]
query (`torch.LongTensor`):
Encoded queries, shape [mini_batch_size, query_length]
response (`torch.LongTensor`):
Encoded responses, shape [mini_batch_size, response_length]
model_input (`torch.LongTensor`):
Concatenated queries and responses, shape [mini_batch_size, query_length+response_length]
Returns:
train_stats (dict[str, `torch.Tensor`]):
Dictionary of training statistics
"""
self.model.train()
loss_p, loss_v, train_stats = self.loss(
old_logprobs, values, logits, vpreds, logprobs, mask, advantages, returns
)
loss = loss_p + loss_v
self.accelerator.backward(loss)
if self.config.max_grad_norm is not None:
if self.accelerator.sync_gradients:
self.accelerator.clip_grad_norm_(self.model_params, self.config.max_grad_norm)
self.optimizer.step()
# we call optimizer.zero_grad() every time and let `accelerator` handle accumulation
# see https://huggingface.co/docs/accelerate/usage_guides/gradient_accumulation#the-finished-code
self.optimizer.zero_grad()
return train_stats
def compute_rewards(
self,
scores: torch.FloatTensor,
logprobs: torch.FloatTensor,
ref_logprobs: torch.FloatTensor,
masks: torch.LongTensor,
):
"""
Compute per token rewards from scores and KL-penalty.
Args:
scores (`torch.FloatTensor`):
Scores from the reward model, shape (`batch_size`)
logprobs (`torch.FloatTensor`):
Log probabilities of the model, shape (`batch_size`, `response_length`)
ref_logprobs (`torch.FloatTensor`):
Log probabilities of the reference model, shape (`batch_size`, `response_length`)
Returns:
`torch.FloatTensor`: Per token rewards, shape (`batch_size`, `response_length`)
`torch.FloatTensor`: Non score rewards, shape (`batch_size`, `response_length`)
`torch.FloatTensor`: KL penalty, shape (`batch_size`, `response_length`)
"""
rewards, non_score_rewards, kls = [], [], []
for score, logprob, ref_logprob, mask in zip(scores, logprobs, ref_logprobs, masks):
# compute KL penalty (from difference in logprobs)
kl = self._kl_penalty(logprob, ref_logprob)
kls.append(kl)
non_score_reward = -self.kl_ctl.value * kl
non_score_rewards.append(non_score_reward)
reward = non_score_reward.clone()
last_non_masked_index = mask.nonzero()[-1]
# reward is preference model score + KL penalty
reward[last_non_masked_index] += score
rewards.append(reward)
return torch.stack(rewards), torch.stack(non_score_rewards), torch.stack(kls)
def _kl_penalty(self, logprob: torch.FloatTensor, ref_logprob: torch.FloatTensor) -> torch.FloatTensor:
if self.config.kl_penalty == "kl":
return logprob - ref_logprob
if self.config.kl_penalty == "abs":
return (logprob - ref_logprob).abs()
if self.config.kl_penalty == "mse":
return 0.5 * (logprob - ref_logprob).square()
if self.config.kl_penalty == "full":
# Flip is required due to this issue? :https://github.com/pytorch/pytorch/issues/57459
return F.kl_div(ref_logprob, logprob, log_target=True, reduction="none").sum(-1)
raise NotImplementedError
def compute_advantages(
self,
values: torch.FloatTensor,
rewards: torch.FloatTensor,
mask: torch.FloatTensor,
):
lastgaelam = 0
advantages_reversed = []
gen_len = rewards.shape[-1]
values = values * mask
rewards = rewards * mask
if self.config.whiten_rewards:
rewards = masked_whiten(rewards, mask, shift_mean=False)
for t in reversed(range(gen_len)):
nextvalues = values[:, t + 1] if t < gen_len - 1 else 0.0
delta = rewards[:, t] + self.config.gamma * nextvalues - values[:, t]
lastgaelam = delta + self.config.gamma * self.config.lam * lastgaelam
advantages_reversed.append(lastgaelam)
advantages = torch.stack(advantages_reversed[::-1]).transpose(0, 1)
returns = advantages + values
advantages = masked_whiten(advantages, mask)
advantages = advantages.detach()
return values, advantages, returns
def loss(
self,
old_logprobs: torch.FloatTensor,
values: torch.FloatTensor,
logits: torch.FloatTensor,
vpreds: torch.FloatTensor,
logprobs: torch.FloatTensor,
mask: torch.LongTensor,
advantages: torch.FloatTensor,
returns: torch.FloatTensor,
):
"""
Calculate policy and value losses.
Args:
old_logprobs (`torch.FloatTensor`):
Log probabilities of the model, shape (`batch_size`, `response_length`)
values (`torch.FloatTensor`):
Values of the value head, shape (`batch_size`, `response_length`)
rewards (`torch.FloatTensor`):
Rewards from the reward model, shape (`batch_size`, `response_length`)
logits (`torch.FloatTensor`):
Logits of the model, shape (`batch_size`, `response_length`, `vocab_size`)
v_pred (`torch.FloatTensor`):
Values of the value head, shape (`batch_size`, `response_length`)
logprobs (`torch.FloatTensor`):
Log probabilities of the model, shape (`batch_size`, `response_length`)
"""
vpredclipped = clip_by_value(
vpreds,
values - self.config.cliprange_value,
values + self.config.cliprange_value,
)
vf_losses1 = (vpreds - returns) ** 2
vf_losses2 = (vpredclipped - returns) ** 2
vf_loss = 0.5 * masked_mean(torch.max(vf_losses1, vf_losses2), mask)
vf_clipfrac = masked_mean(torch.gt(vf_losses2, vf_losses1).float(), mask)
ratio = torch.exp(logprobs - old_logprobs)
pg_losses = -advantages * ratio
pg_losses2 = -advantages * torch.clamp(ratio, 1.0 - self.config.cliprange, 1.0 + self.config.cliprange)
pg_loss = masked_mean(torch.max(pg_losses, pg_losses2), mask)
pg_clipfrac = masked_mean(torch.gt(pg_losses2, pg_losses).float(), mask)
loss = pg_loss + self.config.vf_coef * vf_loss
avg_ratio = masked_mean(ratio, mask).item()
if avg_ratio > self.config.ratio_threshold:
warnings.warn(
f"The average ratio of batch ({avg_ratio:.2f}) exceeds threshold {self.config.ratio_threshold:.2f}. Skipping batch."
)
pg_loss = pg_loss * 0.0
vf_loss = vf_loss * 0.0
loss = loss * 0.0
entropy = masked_mean(entropy_from_logits(logits), mask)
approxkl = 0.5 * masked_mean((logprobs - old_logprobs) ** 2, mask)
policykl = masked_mean(old_logprobs - logprobs, mask)
return_mean, return_var = masked_mean(returns, mask), masked_var(returns, mask)
value_mean, value_var = masked_mean(values, mask), masked_var(values, mask)
stats = dict(
loss=dict(policy=pg_loss.detach(), value=vf_loss.detach(), total=loss.detach()),
policy=dict(
entropy=entropy.detach(),
approxkl=approxkl.detach(),
policykl=policykl.detach(),
clipfrac=pg_clipfrac.detach(),
advantages=advantages.detach(),
advantages_mean=masked_mean(advantages, mask).detach(),
ratio=ratio.detach(),
),
returns=dict(mean=return_mean.detach(), var=return_var.detach()),
val=dict(
vpred=masked_mean(vpreds, mask).detach(),
error=masked_mean((vpreds - returns) ** 2, mask).detach(),
clipfrac=vf_clipfrac.detach(),
mean=value_mean.detach(),
var=value_var.detach(),
),
)
return pg_loss, self.config.vf_coef * vf_loss, flatten_dict(stats)
def record_step_stats(self, kl_coef: float, **data):
"""
Record training step statistics.
Args:
kl_coef (`float`):
KL coefficient
data (`dict`):
Dictionary of training step data
Returns:
stats (`dict`):
Dictionary of training step statistics
"""
mask = data.pop("masks")
kls = data.pop("kls")
kl_list = ((kls) * mask).sum(axis=-1)
mean_kl = kl_list.mean()
mean_entropy = (-data["logprobs"] * mask).sum(axis=-1).mean()
mean_non_score_reward = masked_mean(
data["non_score_reward"], mask
) # non_score_reward is size `batch_size`, `response_length`
mean_scores = data["scores"].mean() # scores is size `batch_size`
std_scores = data["scores"].std()
if mean_kl.item() < -1.0:
# warn users
warnings.warn(
f"KL divergence is starting to become negative: {mean_kl.item():.2f} - this might be a precursor for failed training."
" sometimes this happens because the generation kwargs are not correctly set. Please make sure"
" that the generation kwargs are set correctly, or review your training hyperparameters."
)
stats = {
"objective/kl": mean_kl,
"objective/kl_dist": kl_list,
"objective/logprobs": data["logprobs"],
"objective/ref_logprobs": data["ref_logprobs"],
"objective/kl_coef": kl_coef,
"objective/entropy": mean_entropy,
"ppo/mean_non_score_reward": mean_non_score_reward,
"ppo/mean_scores": mean_scores,
"ppo/std_scores": std_scores,
}
# Log text properties
query_lens = torch.tensor([len(query) for query in data["queries"]], dtype=torch.float)
response_lens = torch.tensor([len(response) for response in data["responses"]], dtype=torch.float)
stats["tokens/queries_len_mean"] = torch.mean(query_lens).cpu().numpy().item()
stats["tokens/queries_len_std"] = torch.std(query_lens).cpu().numpy().item()
stats["tokens/queries_dist"] = query_lens.cpu().numpy()
stats["tokens/responses_len_mean"] = torch.mean(response_lens).cpu().numpy().item()
stats["tokens/responses_len_std"] = torch.std(response_lens).cpu().numpy().item()
stats["tokens/responses_dist"] = response_lens.cpu().numpy()
for k, v in data["train_stats"].items():
stats[f"ppo/{k}"] = torch.mean(v, axis=0)
stats["ppo/val/var_explained"] = 1 - stats["ppo/val/error"] / stats["ppo/returns/var"]
return stats
def log_stats(
self,
stats: dict,
batch: dict,
rewards: List[torch.FloatTensor],
columns_to_log: typing.Iterable[str] = ("query", "response"),
):
"""
A function that logs all the training stats. Call it at the end of each epoch.
Args:
stats (dict[str, Any]):
A dictionary of training stats.
batch (dict[str, Any]):
A dictionary of batch data, this contains the queries and responses.
rewards (`List[torch.FloatTensor]`):
A tensor of rewards.
"""
# all gather stats
if not isinstance(rewards, torch.Tensor):
rewards = torch.tensor(rewards).to(self.current_device)
rewards = self.accelerator.gather(rewards).flatten()
if self.config.log_with == "wandb":
import wandb
if any(column_to_log not in batch.keys() for column_to_log in columns_to_log):
raise ValueError(f"Columns to log {columns_to_log} are not present in the batch {batch.keys()}.")
batch_list = [batch[column_to_log] for column_to_log in columns_to_log]
if self.is_distributed:
gathered_batch_list = []
for b in batch_list:
flattened = gather_object(b)
gathered_batch_list.append(flattened)
batch_list = gathered_batch_list
# Log only if we are in the main process
if self.accelerator.is_main_process:
logs = {}
# Log stats
if "query" not in batch.keys() and "response" not in batch.keys():
# warn the user that the game logs will not be logged
warnings.warn(
"The game logs will not be logged because the batch does not contain the keys 'query' and "
"'response'. "
)
elif self.config.log_with == "wandb":
table_rows = [list(r) for r in zip(*batch_list, rewards.cpu().tolist())]
logs.update({"game_log": wandb.Table(columns=[*columns_to_log, "reward"], rows=table_rows)})
logs.update(stats)
# manually cast in fp32 for bf16 torch tensors
for k, v in logs.items():
if isinstance(v, torch.Tensor) and v.dtype == torch.bfloat16:
logs[k] = v.float()
logs["env/reward_mean"] = torch.mean(rewards).cpu().numpy().item()
logs["env/reward_std"] = torch.std(rewards).cpu().numpy().item()
logs["env/reward_dist"] = rewards.cpu().numpy()
if self.config.log_with == "tensorboard":
# update the current step
self.current_step += 1
self.accelerator.log(
logs,
step=self.current_step if self.config.log_with == "tensorboard" else None,
)
def create_model_card(self, path: str, model_name: Optional[str] = "TRL Model") -> None:
"""Creates and saves a model card for a TRL model.
Args:
path (`str`): The path to save the model card to.
model_name (`str`, *optional*): The name of the model, defaults to `TRL Model`.
"""
try:
user = whoami()["name"]
# handle the offline case
except Exception:
warnings.warn("Cannot retrieve user information assuming you are running in offline mode.")
return
if not os.path.exists(path):
os.makedirs(path)
model_card_content = MODEL_CARD_TEMPLATE.format(model_name=model_name, model_id=f"{user}/{path}")
with open(os.path.join(path, "README.md"), "w", encoding="utf-8") as f:
f.write(model_card_content)
def _save_pretrained(self, save_directory: str) -> None:
self.accelerator.unwrap_model(self.model).save_pretrained(save_directory)
self.tokenizer.save_pretrained(save_directory)
self.create_model_card(save_directory)
def _show_tokens(self, tokens, masks):
from rich import print
from rich.text import Text
text = Text()
for _i, (token, mask) in enumerate(zip(tokens, masks)):
if mask == 1:
text.append(self.tokenizer.decode(token.item()), style="black on deep_sky_blue1")
text.append(" ")
else:
text.append(self.tokenizer.decode(token.item()), style="black on cyan3")
text.append(" ")
print(text)
def _prepare_deepspeed(self, model: PreTrainedModelWrapper):
# Adapted from accelerate: https://github.com/huggingface/accelerate/blob/739b135f8367becb67ffaada12fe76e3aa60fefd/src/accelerate/accelerator.py#L1473
deepspeed_plugin = self.accelerator.state.deepspeed_plugin
config_kwargs = deepspeed_plugin.deepspeed_config
if model is not None:
if hasattr(model, "config"):
hidden_size = (
max(model.config.hidden_sizes)
if getattr(model.config, "hidden_sizes", None)
else getattr(model.config, "hidden_size", None)
)
if hidden_size is not None and config_kwargs["zero_optimization"]["stage"] == 3:
# Note that `stage3_prefetch_bucket_size` can produce DeepSpeed messages like: `Invalidate trace cache @ step 0: expected module 1, but got module 0`
# This is expected and is not an error, see: https://github.com/microsoft/DeepSpeed/discussions/4081
config_kwargs.update(
{
"zero_optimization.reduce_bucket_size": hidden_size * hidden_size,
"zero_optimization.stage3_param_persistence_threshold": 10 * hidden_size,
"zero_optimization.stage3_prefetch_bucket_size": 0.9 * hidden_size * hidden_size,
}
)
# If ZeRO-3 is used, we shard both the active and reference model.
# Otherwise, we assume the reference model fits in memory and is initialized on each device with ZeRO disabled (stage 0)
if config_kwargs["zero_optimization"]["stage"] != 3:
config_kwargs["zero_optimization"]["stage"] = 0
model, *_ = deepspeed.initialize(model=model, config=config_kwargs)
model.eval()
return model