
Umar Jamil – https://github.com/hkproj/rlhf-ppo

RLHF and PPO
Umar Jamil
Downloaded from: https://github.com/hkproj/rlhf-ppo
License: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
https://creativecommons.org/licenses/by-nc/4.0/legalcode

Not for commercial use

https://github.com/hkproj/rlhf-ppo
https://github.com/hkproj/rlhf-ppo
https://creativecommons.org/licenses/by-nc/4.0/legalcode

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Topics

• Short intro to language models

• AI alignment

• Reinforcement Learning
• The RL setup

• Connection between RL and language models

• Reward model

• Trajectories

• Policy Gradient Optimization

• Reducing Variance

• Advantage estimation

• Importance sampling

• Off-Policy Learning

• PPO
• Loss function

• Reward hacking

• Code walkthrough

Prerequisites

• Basics of probability and statistics.

• Basics of deep learning (gradient
descent, loss functions, etc.)

• Basic knowledge of RL (agent, state,
environment, reward, etc.)

• Understanding of the Transformer model
and language models

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Short intro to language models
A language model is a probabilistic model that assign probabilities to sequence of words.
In practice, a language model allows us to compute the following:

P [………... | “Shanghai is a city in”]

PromptNext Token

A language model outputs a list of probabilities, one for every token in the vocabulary, indicating how likely a token is the next one.

China

Beijing

Cat

Pizza

85%

10%

2.5%

…

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Iteratively generating the next token
To generate a complete answer to a prompt, a language model is iteratively queried by adding the previously chosen token to the input.

LLMWhere is Shanghai? ShanghaiTime = 0

LLMWhere is Shanghai? Shanghai isTime = 1

LLMWhere is Shanghai? Shanghai is inTime = 2

LLMWhere is Shanghai? Shanghai is in ChinaTime = 3

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

AI alignment
A large language model typically is pretrained on a massive amount of data, for example the entire Wikipedia and billions of web pages.
This gives the language model a vast “knowledge” of information to complete any prompt in a reasonable way. However, to use an LLM as a
chat assistant (for example ChatGPT) we want to force the language model to follow a particular style. For example, we may want the
following:

• Do not use offensive language

• Do not use racist expressions

• Answer questions using a particular style

The goal of AI alignment is to align the model’s behavior with a desired behavior.

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Introduction to Reinforcement Learning
Reinforcement Learning is concerned with how an intelligent agent should take actions in an environment to maximize the cumulative reward.

Let me give you a concrete example with our channel’s mascot.

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

The RL setup
Agent: the cat

State: the position of the cat (x, y) in the grid

Action: at each position, the cat can move to one of the 4-directionally connected cells. If
a move is invalid, the cell will not move and remain in the same position. Every time the
cat makes a move, it results in a new state and a reward.

Reward model:

• A move to another empty cell results in a reward of 0.

• A move towards the broom, will result in a reward of -1.

• A move towards the bathtub will result in a reward of -10 and the cat fainting
(episode over). The cat will be respawned at the initial position again.

• A move towards the meat will result in a reward of +100

Policy: a policy rules how the agent selects the action to perform given the state it is in:
𝑎𝑡 ~ 𝜋(∙ |𝑠𝑡)

The goal in RL is to select a policy that maximizes the expected return
when the agent acts according to it.

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

The RL setup: connection to language models
Agent: the language model itself

State: the prompt (input tokens)

Action: which token is selected as the next token

Reward model: the language model should be rewarded for generating “good responses” and should not receive any reward for generating “bad
responses”.

Policy: In the case of language models, the policy is the language model itself! Because it models the probability of the action space given the current state
of the agent: 𝑎𝑡 ~ 𝜋(∙ |𝑠𝑡)

Let’s look at how we can define the reward model for our language model

P [………... | “Shanghai is a city in”]

StateAction

China

Beijing

Cat

Pizza

85%

10%

2.5%

…

𝒂𝒕 ~ 𝝅(∙ |𝒔𝒕)

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Reward model for language models
It is not easy to create a reward model for language models, because this would require us to create a dataset of prompts and responses and assign a
universally accepted “reward” for each answer.

Question (Prompt) Answer (Text generated by the language
model)

Reward (0.0 ~ 1.0)

Where is Shanghai? Shanghai is a city in China ???

Explain gravity like I’m 5 Gravity is what pulls things toward each other.
It's why you stay on the ground and planets
orbit the sun.

???

What is 2+2? 4 ???

People are so good good at finding a common ground for agreement, but unfortunately, they’re good at comparing.

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Reward model by comparison
Imagine if we could instead create a dataset of queries and answers and we could ask people to just select which one they prefer. This would be much easier!

Question (Prompt) Answer 1 Answer 2 Chosen

Where is Shanghai? Shanghai is a city in China Shanghai does not exist 1

Explain gravity like I’m 5 Gravity is a famous restaurant Gravity is what pulls things toward
each other. It's why you stay on
the ground and planets orbit the
sun.

2

What is 2+2? 4 2+2 is a very complicated math
problem…

1

Using a dataset like this, we can train a model to assign a score to a given answer. Let’s see how it’s done.

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Reward model architecture
When we give a series to tokens as input to a language model, which is commonly a Transformer model, it generates a list of hidden states, each
corresponding to one input token, which is an embedding that “captures” the information of all the tokens that come before it. The hidden states are then
converted into logits through a Linear layer and then into probabilities by using the softmax function. To generate the reward for a response, we can just use
the hidden state of the last token of the response, send it to a Linear layer (with only one output feature) and use it as the value of the reward associated with
the input.

TOK 01 TOK 02 TOK 03 TOK 04 TOK 05 TOK 06 TOK 07 TOK 08

Transformer Layer

HS 01 HS 02 HS 03 HS 04 HS 05 HS 06 HS 07 HS 08

Linear

Reward

Input tokens: question + answer

Hidden states

Attention mechanism

Linear layer (one output feature)

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Reward model loss
To optimize our language model’s behavior by using RL, we need a score model that gives a numeric value for each response generated by the language
model. Now that we have a dataset that defines which answer we like based on a query (prompt), we can build a neural network that gives us a numeric score
for each response.

Response Reward Model Reward (numeric)

𝐿𝑜𝑠𝑠 = −log 𝜎 𝑟 𝑥, 𝑦𝑤 − 𝑟 𝑥, 𝑦𝑙

We have two cases:

• 𝑟 𝑥, 𝑦𝑤 > 𝑟 𝑥, 𝑦𝑙 → Sigmoid will return a value > 0.5 → Loss will be a small negative number

• The loss will be small when the order is correct

• 𝑟 𝑥, 𝑦𝑤 < 𝑟 𝑥, 𝑦𝑙 → Sigmoid will return a value < 0.5 → Loss will be a very large negative number

• The loss will be very large when the order is wrong

This loss forces the model to give high rewards to “winning” responses and low rewards to “losing” responses, because that’s the only way for the model to
minimize the loss.

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Reward model: practical implementation
In HuggingFace, we can train a custom reward model by using a RewardTrainer and an AutoModelForSequenceClassification, which is an language model
with a special linear layer on top. We just ask the language model to output the hidden state corresponding to the last token, send it to a linear layer that
calculates the reward and then train the language model according to the loss we described in our previous slide.

Reward (single floating-point number) given to the chosen response

Reward (single floating-point number) given to the rejected response

Calculate the loss

𝐿𝑜𝑠𝑠 = −log 𝜎 𝑟 𝑥, 𝑦𝑤 − 𝑟 𝑥, 𝑦𝑙

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Let’s talk about trajectories…
As said previously, the goal in RL is to select a policy which maximizes the expected return when the agent acts according to it. More formally:

The expected return of a policy is the expected return over all possible trajectories.

A trajectory is a series of (action, state), starting from an initial state

We will model the next state as being stochastic (suppose that the cat is drunk and doesn’t always succeed in
moving correctly)

We can thus define the probability of a trajectory as follows:

We will always work with discounted rewards (we prefer immediate rewards instead of future):

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Trajectories in language models
When dealing with language models, we want to fine-tune the language model so that it selects the next token in such a way as to maximize the reward it
gets.

What is a trajectory for a language model? It is a series of prompts (state) and their next tokens (actions).

Where is Shanghai? Shanghai is in China

𝑠0 𝑎0

𝑠1 𝑎1

𝑠2 𝑎2

As we can see, when a language model is used to generate a response for a question (or in general to generate a text given a prompt), we can see a
series of states and actions, which define a trajectory.

𝑠3 𝑎3

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Policy Gradient Optimization
Imagine that we have a policy 𝜋𝜃, parameterized by parameters 𝜃. We want to change the parameters of the policy such that we maximize the expected
return when using the policy. That is, we want to maximize the following:

When we have a deep neural network, our goal is to change the parameters of the network iteratively such that we minimize a loss function: this is a
typical use case of Stochastic Gradient Descent. In our case, we want to maximize a function, so we can use Stochastic Gradient Ascent:

The gradient of the policy is known as policy gradient and the algorithms that optimize the policy this way are called policy gradient algorithms.

The problem is that to calculate the gradient, we would need to evaluate it over all the possible trajectories, which is computationally intractable unless
we have a very small state space.

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Policy Gradient Optimization
Let’s try to derive an expression for the policy gradient that we can compute in a reasonable time.

This is an expectation, which means we can approximate it with a sample mean by collecting a set D of trajectories.

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

We first found an expression of the gradient of the expected reward with respect to the parameters 𝜃 and then we approximated it using a sample mean.

This is how we should proceed in practice:

1. Create a neural network that defines a policy (takes an input the current state of the agent and outputs the probability over the action space)

2. Use the network to sample trajectories and their corresponding rewards (we can run each trajectory for example for 100 steps or until the cat faints).

3. Use the sample to calculate the gradient

4. Run stochastic gradient ascent to update the parameters of the policy/network

5. Go back to 2

This is known as the REINFORCE algorithm in literature.

Recap of what we’ve done so far

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Generating trajectories for LMs
Remember the dataset of preferences that we built for the reward model? We can use questions from the data set and ask our model to generate the
answer. We then calculate the reward for the generated answer and train the model according to the approximated gradient of the policy, as described in
the REINFORCE algorithm.

Question (Prompt)

Where is Shanghai?

Explain gravity like I’m 5

What is 2+2?

Since the text generation process results in a series of states (prompts) and actions (next tokens), we obtain a series of trajectories!

OK, but how do we do this in practice?

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

How can we calculate the log probabilities of a trajectory for a Language Model? Imagine our language model generated the following response for the
given question. Let’s see how we can leverage the generated response to calculate log probabilities over the single (state, action) pairs.

Calculating log probabilities of our policy (LM)

Where is Shanghai ? Shanghai is in China

Transformer Layer (Policy 𝜋𝜃)

HS 01 HS 02 HS 03 HS 04 HS 05 HS 06 HS 07 HS 08

LOGITS 01 LOGITS 02 LOGITS 03 LOGITS 04 LOGITS 05 LOGITS 06 LOGITS 07 LOGITS 08

Apply the Linear projection to all the hidden states to
generate logits for all the positions

Each hidden state encoder information only about
previous tokens because we apply a causal mask during
self-attention!

LOGPROB
(MULTI) 01

LOGPROB
(MULTI) 02

LOGPROB
(MULTI) 03

LOGPROB
(MULTI) 04

LOGPROB
(MULTI) 05

LOGPROB
(MULTI) 06

LOGPROB
(MULTI) 07

LOGPROB
(MULTI) 08

Apply the log _𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function to generate log
probabilities. log _𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥) = log(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥))

LOGPROB
(t=0)

LOGPROB
(t=1)

LOGPROB
(t=2)

LOGPROB
(t=3)

Select the log probably corresponding to the action
actually taken by the policy (the next token!)

Shanghai is in China

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Where is Shanghai ? Shanghai is in China

Transformer Layer (Reward model)

HS 01 HS 02 HS 03 HS 04 HS 05 HS 06 HS 07 HS 08

Reward (t=3)

We can do the same to generate the reward for all the (state, action) pairs! This is because the reward model is usually a Language Model with a linear
layer on top!

Calculating rewards for each trajectory

Linear Layer Linear Layer Linear Layer Linear Layer

Reward (t=2)Reward (t=1)Reward (t=0)

Linear layer with only one output feature

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Problems with Gradient Policy Optimization
First problem: the gradient approximation that we have found is unbiased (meaning that on average it will converge to the true gradient), but it exhibits high variance.

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Reducing variance: you can’t alter the past
The estimator of the gradient that we have found, is multiplying the gradient of the log probabilities of each action in the current trajectory with the
rewards obtained in the entire trajectory

∇𝜃 𝐽 𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃 𝑎𝑖,𝑡 | 𝑠𝑖,𝑡 ෍

𝑡=0

𝑇

𝑟(𝑠𝑖,𝑡, 𝑎𝑖,𝑡)

For each action, we are also multiplying rewards that came before the action was taken.
It has been proven that past terms cancel out in expectation, so we can remove them.

∇𝜃 𝐽 𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃 𝑎𝑖,𝑡 | 𝑠𝑖,𝑡 ෍

𝑡′=𝑡

𝑇

𝑟(𝑠𝑖,𝑡′ , 𝑎𝑖,𝑡′)

Commonly known as “rewards to go”

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Reducing variance: baseline
It can be proven that subtracting a baseline from the rewards to go, still results in an unbiased estimator of the gradient.

∇𝜃 𝐽 𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃 𝑎𝑖,𝑡 | 𝑠𝑖,𝑡 ෍

𝑡′=𝑡

𝑇

𝑟(𝑠𝑖,𝑡′ , 𝑎𝑖,𝑡′) − 𝑏

Baseline
Can also be dependent upon the state

As baseline we will choose the value function 𝑉𝜋 (𝑠) which indicates what is the future expected reward if the agent is in state s and then acts according to
the policy 𝜋.

We expect the value for this state to be high

We expect the value for this state to be low

Where is Shanghai? Shanghai is

Where is Shanghai? Chocolate muffins

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

How do we estimate 𝑉𝜋 𝑠 ?

Where is Shanghai ? Shanghai is in China

Transformer Layer (Policy 𝜋𝜃)

HS 01 HS 02 HS 03 HS 04 HS 05 HS 06 HS 07 HS 08

Value (t=3)

Linear Layer Linear Layer Linear Layer Linear Layer

Value (t=2)Value (t=1)Value (t=0)

Linear layer with only one output feature

We an additional Linear layer on top of our Language Model (the policy 𝜋𝜃) that estimates the value of the state at a particulate time step.

Please note that the Language Model (the policy 𝜋𝜃) already has a Linear layer to transform hidden states into logits. The one shown below is another
Layer that is added to the model.

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Reducing variance: introducing Q and V
In the previous slide, we have found an expression for the “rewards to go” that can reduce the variance of our estimator. The “rewards to go” indicates
how much reward our agent will receive if it starts from state s and takes action a, and then acts according to the policy itself. This in RL is known as the Q
function, which indicates what’s the expected return if the agent starts at state s, takes action a and then acts according to the policy.

∇𝜃 𝐽 𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃 𝑎𝑖,𝑡 | 𝑠𝑖,𝑡 ෍

𝑡′=𝑡

𝑇

𝑟(𝑠𝑖,𝑡′ , 𝑎𝑖,𝑡′)

Should remind you of the Q function.

𝑄𝜋 𝑠, 𝑎 = 𝐸
𝑠′

[𝑟 𝑠, 𝑎 + 𝛾𝐸
𝑎′

[𝑄𝜋 𝑠′, 𝑎′]]

Remember we said we can also use a baseline to reduce variance? Well let’s use another function, called value function, as baseline, to further reduce the
variance.

∇𝜃 𝐽 𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃 𝑎𝑖,𝑡 | 𝑠𝑖,𝑡 𝑄𝜋 𝑠𝑖,𝑡, 𝑎𝑖,𝑡 − 𝑉𝜋 (𝑠𝑖,𝑡)

Known as the advantage function

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Reducing variance: interpreting the advantage
Let’s try to interpret the formula we have obtained

∇𝜃 𝐽 𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃 𝑎𝑖,𝑡 | 𝑠𝑖,𝑡 𝑄𝜋 𝑠𝑖,𝑡, 𝑎𝑖,𝑡 − 𝑉𝜋(𝑠𝑖,𝑡)

∇𝜃 𝐽 𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃 𝑎𝑖,𝑡 | 𝑠𝑖,𝑡 𝐴𝜋 𝑠𝑖,𝑡, 𝑎𝑖,𝑡

The advantage function tells us how better is to choose a particular action a in a state s over the average
expectation we get by choosing randomly an action in the same state s.

In this state, it gives the agent more reward to choose the action “go down” instead of randomly
choosing an action. It means the action “go down” is better than the average action in this state.

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Estimating the advantage term
We can estimate the advantage term in many ways, as follows:

መ𝐴𝜋 𝑠𝑡 , 𝑎𝑡 = 𝑟 𝑠𝑡 , 𝑎𝑡 + 𝛾𝑉𝜋 𝑠𝑡+1 − 𝑉𝜋 𝑠𝑡

መ𝐴𝜋 𝑠𝑡 , 𝑎𝑡 = 𝑟 𝑠𝑡 , 𝑎𝑡 + 𝛾𝑟 𝑠𝑡+1, 𝑎𝑡+1 + 𝛾2𝑉𝜋 𝑠𝑡+2 − 𝑉𝜋 𝑠𝑡

መ𝐴𝜋 𝑠𝑡 , 𝑎𝑡 = [𝑟 𝑠𝑡 , 𝑎𝑡 + 𝛾𝑟 𝑠𝑡+1, 𝑎𝑡+1 + 𝛾2𝑟 𝑠𝑡+2, 𝑎𝑡+2 + 𝛾3𝑉𝜋 𝑠𝑡+3] − 𝑉𝜋 𝑠𝑡

If we stop too early, we will get a very high bias (because we are approximating the value function, and only using one “real” reward from our trajectory).
If we stop after many terms, we will get high variance. In order to solve this bias-variance problem, we can take the weighted sum of the terms to obtain
the Generalized Advantage Estimation:

𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉𝜋 𝑠𝑡+1 − 𝑉𝜋(𝑠𝑡)

መ𝐴𝑡 = 𝛿𝑡 + 𝛾𝜆 መ𝐴𝑡+1

This is a recursive formula that for the last term equals the first expansion
For the second-last term equals to the second expansion (weighted by 𝜆)
Etc.

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Advantage term for language models
In the case of language models, this result tells the policy (the language model) to increase the likelihood of choosing the next token, given a prompt
(state) that in expectation results in “better than average” rewards. Which means that the language model will be forced to choose tokens that will more
likely to lead to future tokens that comply with its reward model (that are more aligned with our training data set).

∇𝜃 𝐽 𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃 𝑎𝑖,𝑡 | 𝑠𝑖,𝑡 𝐴𝜋 𝑠𝑖,𝑡, 𝑎𝑖,𝑡

Where is Shanghai? Chocolate

Where is Shanghai? Shanghai
This action (the word “Shanghai”) will result in a good response and so, a high reward. This will train the
model to select the word “Shanghai” more often if it sees the same prompt.

This action (the word “Chocolate”) will result in a bad response and so, a low reward. This will train the
model to select the word “Chocolate” less often if it sees the same prompt.

State Action

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Problems with Gradient Policy Optimization
Second problem: the expectation that we’ve found, forces us to sample trajectories from our neural network every time we update the parameters.

This can be very inefficient because when training a neural network, we update the parameters many times by taking small steps (according to the
learning rate).

∇𝜃 𝐽 𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃 𝑎𝑖,𝑡 | 𝑠𝑖,𝑡 𝐴𝜋 𝑠𝑖,𝑡, 𝑎𝑖,𝑡

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Importance sampling & off-policy learning
Importance sampling allows to evaluate an expectation over a distribution X using samples taken from another distribution Y.

𝐸𝑥~𝑝(𝑥) 𝑓 𝑥 න 𝑝 𝑥 𝑓 𝑥 𝑑𝑥=

න
𝑞(𝑥)

𝑞(𝑥)
𝑝 𝑥 𝑓 𝑥 𝑑𝑥

න 𝑞(𝑥)
𝑝 𝑥

𝑞(𝑥)
𝑓 𝑥 𝑑𝑥

𝐸𝑥~𝑞(𝑥)

𝑝 𝑥

𝑞(𝑥)
𝑓 𝑥

=

=

=

∇𝜃 𝐽 𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃 𝑎𝑖,𝑡 | 𝑠𝑖,𝑡 𝐴𝜋 𝑠𝑖,𝑡, 𝑎𝑖,𝑡 ∇𝜃ONLINE
𝐽 𝜃ONLINE, 𝜃OFFLINE ≈

1

𝑁
෍

𝑖=1

𝑁

෍

𝑡=0

𝑇

∇𝜃ONLINE

log 𝜋𝜃ONLINE
𝑎𝑖,𝑡 | 𝑠𝑖,𝑡

log 𝜋𝜃OFFLINE
𝑎𝑖,𝑡 | 𝑠𝑖,𝑡

𝐴𝜋 𝑠𝑖,𝑡 , 𝑎𝑖,𝑡

Trajectories sampled from 𝜋𝜃 Trajectories sampled from 𝜋𝜃OFFLINE

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Off-Policy learning

Offline Policy
(language model
with parameters

𝜃offline)

Sample trajectories (sequence of states and actions). Calculate
the rewards and advantages for all (state, action) pairs

Take a mini-batch of
trajectories

Run gradient
ascent to train the

Online Policy
(𝜃online)

Run for K epochs

After K epochs
𝜃offline = 𝜃online

*We do not have two copies of the policy. We sample
the initial trajectories and then save them in the memory.
We then use the saved trajectories to update the model.

∇𝜃ONLINE
𝐽 𝜃ONLINE, 𝜃OFFLINE ≈

1

𝑁
෍

𝑖=1

𝑁

෍

𝑡=0

𝑇

∇𝜃ONLINE

log 𝜋𝜃ONLINE
𝑎𝑖,𝑡 | 𝑠𝑖,𝑡

log 𝜋𝜃OFFLINE
𝑎𝑖,𝑡 | 𝑠𝑖,𝑡

𝐴𝜋 𝑠𝑖,𝑡 , 𝑎𝑖,𝑡

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Off-Policy learning (pseudo-code)

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

The PPO loss

𝐿POLICY = min(
𝜋𝜃 𝑎𝑡 𝑠𝑡

𝜋𝜃𝑜𝑙𝑑
𝑎𝑡 𝑠𝑡

መ𝐴𝑡, 𝑐𝑙𝑖𝑝(
𝜋𝜃 𝑎𝑡 𝑠𝑡

𝜋𝜃𝑜𝑙𝑑
𝑎𝑡 𝑠𝑡

, 1 − 𝜖, 1 + 𝜖) መ𝐴𝑡)

𝐿𝑃𝑃𝑂 = 𝐿POLICY + 𝑐1𝐿VF + 𝑐2𝐿ENTROPY

𝐿VF =
1

2
𝑉𝜃(𝑠) − ෍

𝑡=0

𝑇

𝛾𝑡𝑟𝑡 | 𝑠0 = 𝑠

2

2

𝐿ENTROPY = − ෍

𝑥

𝑝 𝑥 log 𝑝(𝑥)

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Reward hacking
If we apply the “vanilla PPO” like described, the language model (our policy) may just learn to output whatever the reward model wants to see to
maximize its return. We for sure want the language model to receive good rewards, but as the same time we want the language model to output
something that still looks like the training data it was trained upon. For this reason, for every reward generated by the model, we penalize the reward by
the KL-Divergence between the logits generated by the policy being optimized and a frozen version of the language model.

Where is Shanghai ? Shanghai is in China

Transformer Layer (Reward model)

HS 01 HS 02 HS 03 HS 04 HS 05 HS 06 HS 07 HS 08

Reward (t=3)

Linear Layer Linear Layer Linear Layer Linear Layer

Reward (t=2)Reward (t=1)Reward (t=0)

Frozen model

HS 05 HS 06 HS 07 HS 08 Calculate the log probs (using linear layer and softmax)

Calculate the log probs (using linear layer and softmax)

Penalize the reward assigned if log probs
too different (using the KL divergence)

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Talk is cheap. Show me the code.
- Linus Torvalds

https://github.com/hkproj/rlhf-ppo

Umar Jamil – https://github.com/hkproj/rlhf-ppo

Thanks for watching!
Don’t forget to subscribe for
more amazing content on AI
and Machine Learning!

https://github.com/hkproj/rlhf-ppo

	Slide 1: RLHF and PPO
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Thanks for watching! Don’t forget to subscribe for more amazing content on AI and Machine Learning!

