|
import torch |
|
import numpy as np |
|
|
|
class DDPMSampler: |
|
|
|
def __init__(self, generator: torch.Generator, num_training_steps=1000, beta_start: float = 0.00085, beta_end: float = 0.0120): |
|
|
|
|
|
self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_training_steps, dtype=torch.float32) ** 2 |
|
self.alphas = 1.0 - self.betas |
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) |
|
self.one = torch.tensor(1.0) |
|
|
|
self.generator = generator |
|
|
|
self.num_train_timesteps = num_training_steps |
|
self.timesteps = torch.from_numpy(np.arange(0, num_training_steps)[::-1].copy()) |
|
|
|
def set_inference_timesteps(self, num_inference_steps=50): |
|
self.num_inference_steps = num_inference_steps |
|
step_ratio = self.num_train_timesteps // self.num_inference_steps |
|
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) |
|
self.timesteps = torch.from_numpy(timesteps) |
|
|
|
def _get_previous_timestep(self, timestep: int) -> int: |
|
prev_t = timestep - self.num_train_timesteps // self.num_inference_steps |
|
return prev_t |
|
|
|
def _get_variance(self, timestep: int) -> torch.Tensor: |
|
prev_t = self._get_previous_timestep(timestep) |
|
|
|
alpha_prod_t = self.alphas_cumprod[timestep] |
|
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one |
|
current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev |
|
|
|
|
|
|
|
|
|
variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t |
|
|
|
|
|
variance = torch.clamp(variance, min=1e-20) |
|
|
|
return variance |
|
|
|
def set_strength(self, strength=1): |
|
""" |
|
Set how much noise to add to the input image. |
|
More noise (strength ~ 1) means that the output will be further from the input image. |
|
Less noise (strength ~ 0) means that the output will be closer to the input image. |
|
""" |
|
|
|
start_step = self.num_inference_steps - int(self.num_inference_steps * strength) |
|
self.timesteps = self.timesteps[start_step:] |
|
self.start_step = start_step |
|
|
|
def step(self, timestep: int, latents: torch.Tensor, model_output: torch.Tensor): |
|
t = timestep |
|
prev_t = self._get_previous_timestep(t) |
|
|
|
|
|
alpha_prod_t = self.alphas_cumprod[t] |
|
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one |
|
beta_prod_t = 1 - alpha_prod_t |
|
beta_prod_t_prev = 1 - alpha_prod_t_prev |
|
current_alpha_t = alpha_prod_t / alpha_prod_t_prev |
|
current_beta_t = 1 - current_alpha_t |
|
|
|
|
|
|
|
pred_original_sample = (latents - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) |
|
|
|
|
|
|
|
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t |
|
current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t |
|
|
|
|
|
|
|
pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * latents |
|
|
|
|
|
variance = 0 |
|
if t > 0: |
|
device = model_output.device |
|
noise = torch.randn(model_output.shape, generator=self.generator, device=device, dtype=model_output.dtype) |
|
|
|
variance = (self._get_variance(t) ** 0.5) * noise |
|
|
|
|
|
|
|
pred_prev_sample = pred_prev_sample + variance |
|
|
|
return pred_prev_sample |
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.FloatTensor, |
|
timesteps: torch.IntTensor, |
|
) -> torch.FloatTensor: |
|
alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) |
|
timesteps = timesteps.to(original_samples.device) |
|
|
|
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 |
|
sqrt_alpha_prod = sqrt_alpha_prod.flatten() |
|
while len(sqrt_alpha_prod.shape) < len(original_samples.shape): |
|
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) |
|
|
|
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() |
|
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) |
|
|
|
|
|
|
|
|
|
noise = torch.randn(original_samples.shape, generator=self.generator, device=original_samples.device, dtype=original_samples.dtype) |
|
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise |
|
return noisy_samples |
|
|
|
|
|
|
|
|