pt-sk's picture
Upload 11 files
161e2ab verified
raw
history blame
6.22 kB
import torch
import numpy as np
class DDPMSampler:
def __init__(self, generator: torch.Generator, num_training_steps=1000, beta_start: float = 0.00085, beta_end: float = 0.0120):
# Params "beta_start" and "beta_end" taken from: https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/configs/stable-diffusion/v1-inference.yaml#L5C8-L5C8
# For the naming conventions, refer to the DDPM paper (https://arxiv.org/pdf/2006.11239.pdf)
self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_training_steps, dtype=torch.float32) ** 2
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
self.one = torch.tensor(1.0)
self.generator = generator
self.num_train_timesteps = num_training_steps
self.timesteps = torch.from_numpy(np.arange(0, num_training_steps)[::-1].copy())
def set_inference_timesteps(self, num_inference_steps=50):
self.num_inference_steps = num_inference_steps
step_ratio = self.num_train_timesteps // self.num_inference_steps
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
self.timesteps = torch.from_numpy(timesteps)
def _get_previous_timestep(self, timestep: int) -> int:
prev_t = timestep - self.num_train_timesteps // self.num_inference_steps
return prev_t
def _get_variance(self, timestep: int) -> torch.Tensor:
prev_t = self._get_previous_timestep(timestep)
alpha_prod_t = self.alphas_cumprod[timestep]
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t
# we always take the log of variance, so clamp it to ensure it's not 0
variance = torch.clamp(variance, min=1e-20)
return variance
def set_strength(self, strength=1):
"""
Set how much noise to add to the input image.
More noise (strength ~ 1) means that the output will be further from the input image.
Less noise (strength ~ 0) means that the output will be closer to the input image.
"""
# start_step is the number of noise levels to skip
start_step = self.num_inference_steps - int(self.num_inference_steps * strength)
self.timesteps = self.timesteps[start_step:]
self.start_step = start_step
def step(self, timestep: int, latents: torch.Tensor, model_output: torch.Tensor):
t = timestep
prev_t = self._get_previous_timestep(t)
# 1. compute alphas, betas
alpha_prod_t = self.alphas_cumprod[t]
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
current_alpha_t = alpha_prod_t / alpha_prod_t_prev
current_beta_t = 1 - current_alpha_t
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
pred_original_sample = (latents - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * latents
# 6. Add noise
variance = 0
if t > 0:
device = model_output.device
noise = torch.randn(model_output.shape, generator=self.generator, device=device, dtype=model_output.dtype)
# Compute the variance as per formula (7) from https://arxiv.org/pdf/2006.11239.pdf
variance = (self._get_variance(t) ** 0.5) * noise
# sample from N(mu, sigma) = X can be obtained by X = mu + sigma * N(0, 1)
# the variable "variance" is already multiplied by the noise N(0, 1)
pred_prev_sample = pred_prev_sample + variance
return pred_prev_sample
def add_noise(
self,
original_samples: torch.FloatTensor,
timesteps: torch.IntTensor,
) -> torch.FloatTensor:
alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
timesteps = timesteps.to(original_samples.device)
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
# Sample from q(x_t | x_0) as in equation (4) of https://arxiv.org/pdf/2006.11239.pdf
# Because N(mu, sigma) = X can be obtained by X = mu + sigma * N(0, 1)
# here mu = sqrt_alpha_prod * original_samples and sigma = sqrt_one_minus_alpha_prod
noise = torch.randn(original_samples.shape, generator=self.generator, device=original_samples.device, dtype=original_samples.dtype)
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples