|
import torch |
|
import numpy as np |
|
from tqdm import tqdm |
|
from ddpm import DDPMSampler |
|
|
|
WIDTH = 512 |
|
HEIGHT = 512 |
|
LATENTS_WIDTH = WIDTH // 8 |
|
LATENTS_HEIGHT = HEIGHT // 8 |
|
|
|
def generate( |
|
prompt, |
|
uncond_prompt=None, |
|
input_image=None, |
|
strength=0.8, |
|
do_cfg=True, |
|
cfg_scale=7.5, |
|
sampler_name="ddpm", |
|
n_inference_steps=50, |
|
models={}, |
|
seed=None, |
|
device=None, |
|
idle_device=None, |
|
tokenizer=None, |
|
): |
|
with torch.no_grad(): |
|
if not 0 < strength <= 1: |
|
raise ValueError("strength must be between 0 and 1") |
|
|
|
if idle_device: |
|
to_idle = lambda x: x.to(idle_device) |
|
else: |
|
to_idle = lambda x: x |
|
|
|
|
|
generator = torch.Generator(device=device) |
|
if seed is None: |
|
generator.seed() |
|
else: |
|
generator.manual_seed(seed) |
|
|
|
clip = models["clip"] |
|
clip.to(device) |
|
|
|
if do_cfg: |
|
|
|
cond_tokens = tokenizer.batch_encode_plus( |
|
[prompt], padding="max_length", max_length=77 |
|
).input_ids |
|
|
|
cond_tokens = torch.tensor(cond_tokens, dtype=torch.long, device=device) |
|
|
|
cond_context = clip(cond_tokens) |
|
|
|
uncond_tokens = tokenizer.batch_encode_plus( |
|
[uncond_prompt], padding="max_length", max_length=77 |
|
).input_ids |
|
|
|
uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device=device) |
|
|
|
uncond_context = clip(uncond_tokens) |
|
|
|
context = torch.cat([cond_context, uncond_context]) |
|
else: |
|
|
|
tokens = tokenizer.batch_encode_plus( |
|
[prompt], padding="max_length", max_length=77 |
|
).input_ids |
|
|
|
tokens = torch.tensor(tokens, dtype=torch.long, device=device) |
|
|
|
context = clip(tokens) |
|
to_idle(clip) |
|
|
|
if sampler_name == "ddpm": |
|
sampler = DDPMSampler(generator) |
|
sampler.set_inference_timesteps(n_inference_steps) |
|
else: |
|
raise ValueError("Unknown sampler value %s. ") |
|
|
|
latents_shape = (1, 4, LATENTS_HEIGHT, LATENTS_WIDTH) |
|
|
|
if input_image: |
|
encoder = models["encoder"] |
|
encoder.to(device) |
|
|
|
input_image_tensor = input_image.resize((WIDTH, HEIGHT)) |
|
|
|
input_image_tensor = np.array(input_image_tensor) |
|
|
|
input_image_tensor = torch.tensor(input_image_tensor, dtype=torch.float32, device=device) |
|
|
|
input_image_tensor = rescale(input_image_tensor, (0, 255), (-1, 1)) |
|
|
|
input_image_tensor = input_image_tensor.unsqueeze(0) |
|
|
|
input_image_tensor = input_image_tensor.permute(0, 3, 1, 2) |
|
|
|
|
|
encoder_noise = torch.randn(latents_shape, generator=generator, device=device) |
|
|
|
latents = encoder(input_image_tensor, encoder_noise) |
|
|
|
|
|
|
|
sampler.set_strength(strength=strength) |
|
latents = sampler.add_noise(latents, sampler.timesteps[0]) |
|
|
|
to_idle(encoder) |
|
else: |
|
|
|
latents = torch.randn(latents_shape, generator=generator, device=device) |
|
|
|
diffusion = models["diffusion"] |
|
diffusion.to(device) |
|
|
|
timesteps = tqdm(sampler.timesteps) |
|
for i, timestep in enumerate(timesteps): |
|
|
|
time_embedding = get_time_embedding(timestep).to(device) |
|
|
|
|
|
model_input = latents |
|
|
|
if do_cfg: |
|
|
|
model_input = model_input.repeat(2, 1, 1, 1) |
|
|
|
|
|
|
|
model_output = diffusion(model_input, context, time_embedding) |
|
|
|
if do_cfg: |
|
output_cond, output_uncond = model_output.chunk(2) |
|
model_output = cfg_scale * (output_cond - output_uncond) + output_uncond |
|
|
|
|
|
latents = sampler.step(timestep, latents, model_output) |
|
|
|
to_idle(diffusion) |
|
|
|
decoder = models["decoder"] |
|
decoder.to(device) |
|
|
|
images = decoder(latents) |
|
to_idle(decoder) |
|
|
|
images = rescale(images, (-1, 1), (0, 255), clamp=True) |
|
|
|
images = images.permute(0, 2, 3, 1) |
|
images = images.to("cpu", torch.uint8).numpy() |
|
return images[0] |
|
|
|
def rescale(x, old_range, new_range, clamp=False): |
|
old_min, old_max = old_range |
|
new_min, new_max = new_range |
|
x -= old_min |
|
x *= (new_max - new_min) / (old_max - old_min) |
|
x += new_min |
|
if clamp: |
|
x = x.clamp(new_min, new_max) |
|
return x |
|
|
|
def get_time_embedding(timestep): |
|
|
|
freqs = torch.pow(10000, -torch.arange(start=0, end=160, dtype=torch.float32) / 160) |
|
|
|
x = torch.tensor([timestep], dtype=torch.float32)[:, None] * freqs[None] |
|
|
|
return torch.cat([torch.cos(x), torch.sin(x)], dim=-1) |