import model_loader import pipeline from PIL import Image from pathlib import Path from transformers import CLIPTokenizer import torch DEVICE = "cpu" ALLOW_CUDA = True ALLOW_MPS = False if torch.cuda.is_available() and ALLOW_CUDA: DEVICE = "cuda" print(f"Using device: {DEVICE}") tokenizer = CLIPTokenizer("../data/tokenizer_vocab.json", merges_file="../data/tokenizer_merges.txt") model_file = "../data/v1-5-pruned-emaonly.ckpt" models = model_loader.preload_models_from_standard_weights(model_file, device=DEVICE) ## TEXT TO IMAGE # prompt = "A dog with sunglasses, wearing comfy hat, looking at camera, highly detailed, ultra sharp, cinematic, 100mm lens, 8k resolution." prompt = "A cat stretching on the floor, highly detailed, ultra sharp, cinematic, 100mm lens, 8k resolution." uncond_prompt = "" # Also known as negative prom pt do_cfg = True cfg_scale = 8 # min: 1, max: 14 ## IMAGE TO IMAGE input_image = None # Comment to disable image to image image_path = "../images/dog.jpg" # input_image = Image.open(image_path) # Higher values means more noise will be added to the input image, so the result will further from the input image. # Lower values means less noise is added to the input image, so output will be closer to the input image. strength = 0.9 ## SAMPLER sampler = "ddpm" num_inference_steps = 2 seed = 42 output_image = pipeline.generate( prompt=prompt, uncond_prompt=uncond_prompt, input_image=input_image, strength=strength, do_cfg=do_cfg, cfg_scale=cfg_scale, sampler_name=sampler, n_inference_steps=num_inference_steps, seed=seed, models=models, device=DEVICE, idle_device="cpu", tokenizer=tokenizer, ) # Combine the input image and the output image into a single image. Image.fromarray(output_image)