update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: openai/whisper-small
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- google/fleurs
|
8 |
+
metrics:
|
9 |
+
- wer
|
10 |
+
model-index:
|
11 |
+
- name: whisper-small-af-ZA
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Automatic Speech Recognition
|
15 |
+
type: automatic-speech-recognition
|
16 |
+
dataset:
|
17 |
+
name: google/fleurs
|
18 |
+
type: google/fleurs
|
19 |
+
config: af_za
|
20 |
+
split: train+validation
|
21 |
+
args: af_za
|
22 |
+
metrics:
|
23 |
+
- name: Wer
|
24 |
+
type: wer
|
25 |
+
value: 0.36644093303235514
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# whisper-small-af-ZA
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.5728
|
36 |
+
- Wer Ortho: 0.3943
|
37 |
+
- Wer: 0.3664
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 1e-05
|
57 |
+
- train_batch_size: 16
|
58 |
+
- eval_batch_size: 16
|
59 |
+
- seed: 42
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: constant_with_warmup
|
62 |
+
- lr_scheduler_warmup_steps: 5
|
63 |
+
- training_steps: 2000
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
|
69 |
+
| 0.7731 | 1.45 | 100 | 0.7280 | 0.3863 | 0.3740 |
|
70 |
+
| 0.2103 | 2.9 | 200 | 0.5116 | 0.3859 | 0.3661 |
|
71 |
+
| 0.0633 | 4.35 | 300 | 0.4967 | 0.3008 | 0.2810 |
|
72 |
+
| 0.0249 | 5.8 | 400 | 0.5003 | 0.3477 | 0.3299 |
|
73 |
+
| 0.0143 | 7.25 | 500 | 0.5191 | 0.3660 | 0.3510 |
|
74 |
+
| 0.0053 | 8.7 | 600 | 0.5149 | 0.3221 | 0.3070 |
|
75 |
+
| 0.0035 | 10.14 | 700 | 0.5345 | 0.3443 | 0.3266 |
|
76 |
+
| 0.0027 | 11.59 | 800 | 0.5339 | 0.3344 | 0.3175 |
|
77 |
+
| 0.0026 | 13.04 | 900 | 0.5435 | 0.3328 | 0.3134 |
|
78 |
+
| 0.0037 | 14.49 | 1000 | 0.5346 | 0.2714 | 0.2506 |
|
79 |
+
| 0.0045 | 15.94 | 1100 | 0.5438 | 0.3389 | 0.3220 |
|
80 |
+
| 0.0028 | 17.39 | 1200 | 0.5588 | 0.2740 | 0.2551 |
|
81 |
+
| 0.0036 | 18.84 | 1300 | 0.5466 | 0.2702 | 0.2728 |
|
82 |
+
| 0.0035 | 20.29 | 1400 | 0.5364 | 0.3332 | 0.3119 |
|
83 |
+
| 0.0056 | 21.74 | 1500 | 0.5608 | 0.2721 | 0.2506 |
|
84 |
+
| 0.0037 | 23.19 | 1600 | 0.5443 | 0.3027 | 0.2833 |
|
85 |
+
| 0.0035 | 24.64 | 1700 | 0.5466 | 0.3866 | 0.3631 |
|
86 |
+
| 0.0024 | 26.09 | 1800 | 0.5628 | 0.3416 | 0.3198 |
|
87 |
+
| 0.0036 | 27.54 | 1900 | 0.5495 | 0.3122 | 0.2946 |
|
88 |
+
| 0.0016 | 28.99 | 2000 | 0.5728 | 0.3943 | 0.3664 |
|
89 |
+
|
90 |
+
|
91 |
+
### Framework versions
|
92 |
+
|
93 |
+
- Transformers 4.31.0.dev0
|
94 |
+
- Pytorch 1.12.1+cu116
|
95 |
+
- Datasets 2.4.0
|
96 |
+
- Tokenizers 0.12.1
|