lisaterumi
commited on
Commit
•
a0158e4
1
Parent(s):
59f6643
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: "pt"
|
3 |
+
widget:
|
4 |
+
- text: "Dispneia importante aos esforços + dor tipo peso no peito no esforço."
|
5 |
+
- text: "Obeso, has, icc c # cintilografia miocardica para avaliar angina. Discreto edema mmii pricn a esquerda."
|
6 |
+
- text: "Plastia Mitral ( Insuficiencia ), CRM Saf-2Mg e e Saf-3MG ).(09/03/16). Nega palpitação."
|
7 |
+
- text: "Uso: AAS 100 -1xd; Metoprolol 25 -1xd; FSM -1xd ; Levotiroxina 175 -1xd; Sinva 40 -1xd; Fluoxetina 20-1xd."
|
8 |
+
- text: "Refere melhora da dispneia depois da cx porem mantem aos mdoeardos-leves esforço."
|
9 |
+
|
10 |
+
datasets:
|
11 |
+
- TempClinBr
|
12 |
+
---
|
13 |
+
|
14 |
+
# Portuguese NER- TempClinBr - BioBERTpt(all)
|
15 |
+
|
16 |
+
Treinado com BioBERTpt(all), com o corpus TempClinBr.
|
17 |
+
|
18 |
+
Metricas:
|
19 |
+
|
20 |
+
```
|
21 |
+
precision recall f1-score support
|
22 |
+
|
23 |
+
0 0.75 0.90 0.82 291
|
24 |
+
1 0.77 1.00 0.87 33
|
25 |
+
2 1.00 0.25 0.40 28
|
26 |
+
3 0.90 0.99 0.94 71
|
27 |
+
4 0.79 0.91 0.85 112
|
28 |
+
5 0.72 0.83 0.77 420
|
29 |
+
6 0.62 0.45 0.53 11
|
30 |
+
7 0.96 0.85 0.91 2236
|
31 |
+
8 0.61 0.67 0.64 78
|
32 |
+
9 0.61 0.98 0.76 124
|
33 |
+
10 0.81 0.87 0.84 503
|
34 |
+
11 0.67 0.60 0.63 10
|
35 |
+
|
36 |
+
accuracy 0.86 3917
|
37 |
+
macro avg 0.77 0.78 0.74 3917
|
38 |
+
weighted avg 0.87 0.86 0.86 3917
|
39 |
+
|
40 |
+
F1: 0.8588744393393593 Accuracy: 0.8565228491192239
|
41 |
+
|
42 |
+
```
|
43 |
+
|
44 |
+
Parâmetros:
|
45 |
+
|
46 |
+
```
|
47 |
+
device = cuda (Colab)
|
48 |
+
nclasses = len(tag2id)
|
49 |
+
nepochs = 50 => parou na 9
|
50 |
+
batch_size = 16
|
51 |
+
batch_status = 32
|
52 |
+
learning_rate = 3e-5
|
53 |
+
|
54 |
+
early_stop = 5
|
55 |
+
max_length = 256
|
56 |
+
write_path = 'model'
|
57 |
+
```
|
58 |
+
|
59 |
+
Eval no conjunto de teste - TempClinBr
|
60 |
+
OBS: Avaliação com tag "O" (label 7), se necessário fazer a média sem essa tag.
|
61 |
+
|
62 |
+
```
|
63 |
+
tag2id ={'B-Tratamento': 0,
|
64 |
+
'I-Teste': 1,
|
65 |
+
'I-Ocorrencia': 2,
|
66 |
+
'B-Evidencia': 3,
|
67 |
+
'B-Teste': 4,
|
68 |
+
'I-Problema': 5,
|
69 |
+
'B-DepartamentoClinico': 6,
|
70 |
+
'O': 7,
|
71 |
+
'I-Tratamento': 8,
|
72 |
+
'B-Ocorrencia': 9,
|
73 |
+
'B-Problema': 10,
|
74 |
+
'I-DepartamentoClinico': 11,
|
75 |
+
'<pad>': 12}
|
76 |
+
|
77 |
+
precision recall f1-score support
|
78 |
+
|
79 |
+
0 0.82 0.92 0.87 261
|
80 |
+
1 0.81 0.58 0.67 99
|
81 |
+
2 0.56 0.20 0.29 51
|
82 |
+
3 1.00 0.94 0.97 128
|
83 |
+
4 0.81 0.86 0.83 194
|
84 |
+
5 0.81 0.87 0.84 645
|
85 |
+
6 0.96 0.80 0.87 30
|
86 |
+
7 0.95 0.90 0.93 2431
|
87 |
+
8 0.73 0.81 0.77 146
|
88 |
+
9 0.74 0.88 0.80 146
|
89 |
+
10 0.87 0.95 0.91 713
|
90 |
+
11 0.83 0.71 0.77 14
|
91 |
+
12 0.00 0.00 0.00 0
|
92 |
+
|
93 |
+
accuracy 0.89 4858
|
94 |
+
macro avg 0.76 0.72 0.73 4858
|
95 |
+
weighted avg 0.89 0.89 0.89 4858
|
96 |
+
```
|
97 |
+
|
98 |
+
|
99 |
+
Como citar: **em breve**
|