--- library_name: transformers base_model: - unsloth/Llama-3.2-1B-Instruct license: llama3.2 language: - en - it --- # A tiny Llama model tuned for text translation ![A very italian Llama model](llamaestro-sm.png) ## Model Card This model was finetuned with roughly 300.000 examples of translations from English to Italian and Italian to English. The model was finetuned in a way to more directly provide a translation without much explaination. ## Usage ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig from peft import PeftModel base_model_id = "unsloth/Llama-3.2-1B-Instruct" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) base_model = AutoModelForCausalLM.from_pretrained( base_model_id, # Mistral, same as before quantization_config=bnb_config, # Same quantization config as before device_map="auto", trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained(base_model_id, add_bos_token=True, trust_remote_code=True) ft_model = PeftModel.from_pretrained(base_model, "finetuned_model_35000") row_json = [ {"role": "system", "content": "Your job is to return translations for sentences or words from either Italian to English or English to Italian."}, {"role": "user", "content": "Scontri a Bologna, la destra lancia l'offensiva contro i centri sociali."} ] prompt = tokenizer.apply_chat_template(row_json, tokenize=False) model_input = tokenizer(prompt, return_tensors="pt").to("cuda") with torch.no_grad(): print(tokenizer.decode(ft_model.generate(**model_input, max_new_tokens=1024)[0])) ``` ## Data used The source for the data were sentence pairs from tatoeba.com. The data can be downloaded from here: https://tatoeba.org/de/downloads ## Credits Base model: `unsloth/Llama-3.2-1B-Instruct` derived from `meta-llama/Llama-3.2-1B-Instruct` Finetuned by: Leonard PĆ¼ttmann https://www.linkedin.com/in/leonard-p%C3%BCttmann-4648231a9/