File size: 3,018 Bytes
a1d714c
 
e19a201
 
 
 
 
 
 
 
 
 
 
 
19e19cd
 
a1d714c
c954467
e19a201
a1d714c
e19a201
a1d714c
 
e19a201
a1d714c
e19a201
 
a1d714c
e19a201
 
 
a1d714c
e19a201
 
 
 
a1d714c
e19a201
 
 
19e19cd
 
7c19dd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19e19cd
 
 
 
9468f48
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
library_name: transformers
tags:
- seq2seq
license: apache-2.0
datasets:
- Helsinki-NLP/europarl
- Helsinki-NLP/opus-100
language:
- en
- it
base_model:
- bigscience/mt0-small
pipeline_tag: translation
metrics:
- bleu
---

## 🍀 Quadrifoglio - A small model for English -> Italian translation

Quadrifoglio is an encoder-decoder transformer model for English-Italian text translation based on `bigscience/mt0-small`. It was trained on the `en-it` section of `Helsinki-NLP/opus-100` and `Helsinki-NLP/europarl`.


## Usage

```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

# Load model and tokenizer from checkpoint directory
tokenizer = AutoTokenizer.from_pretrained("LeonardPuettmann/mt0-Quadrifoglio-mt-en-it")
model = AutoModelForSeq2SeqLM.from_pretrained("LeonardPuettmann/mt0-Quadrifoglio-mt-en-it")

def generate_response(input_text):
    input_ids = tokenizer("translate English to Italian:" + input_text, return_tensors="pt").input_ids
    output = model.generate(input_ids, max_new_tokens=256)
    return tokenizer.decode(output[0], skip_special_tokens=True)

text_to_translate = "I would like a cup of green tea, please."
response = generate_response(text_to_translate)
print(response)
```

As this model is trained on translating sentence pairs, it is best to split longer text into individual sentences, ideally using SpaCy:
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import spacy
# First, install spaCy and the English language model if you haven't already
# !pip install spacy
# !python -m spacy download en_core_web_sm

nlp = spacy.load("en_core_web_sm")

tokenizer = AutoTokenizer.from_pretrained("LeonardPuettmann/mt0-Quadrifoglio-mt-en-it")
model = AutoModelForSeq2SeqLM.from_pretrained("LeonardPuettmann/mt0-Quadrifoglio-mt-en-it")

def generate_response(input_text):
    input_ids = tokenizer("translate Italian to English: " + input_text, return_tensors="pt").input_ids
    output = model.generate(input_ids, max_new_tokens=256)
    return tokenizer.decode(output[0], skip_special_tokens=True)

text = "How are you doing? Today is a beautiful day. I hope you are doing fine."
doc = nlp(text)
sentences = [sent.text for sent in doc.sents]

sentence_translations = []
for i, sentence in enumerate(sentences):
    sentence_translation = generate_response(sentence)
    sentence_translations.append(sentence_translation)

full_translation = " ".join(sentence_translations)
print(full_translation)
```

## Evaluation
Done on the Opus 100 test set.

### BLEU
|              | Quadrifoglio (this model)     | mt0-small| DeepL  |
|--------------|-------------------------------|----------|--------|
| BLEU Score   | 0.4816                        | 0.0159   | 0.5210 |
| Precision 1  | 0.7305                        | 0.2350   | 0.7613 | 
| Precision 2  | 0.5413                        | 0.0290   | 0.5853 | 
| Precision 3  | 0.4289                        | 0.0076   | 0.4800 |
| Precision 4  | 0.3417                        | 0.0013   | 0.3971 |