File size: 1,615 Bytes
a1d714c
 
e19a201
 
 
 
 
 
 
 
 
 
 
 
19e19cd
 
a1d714c
 
e19a201
a1d714c
e19a201
a1d714c
 
e19a201
a1d714c
e19a201
 
a1d714c
e19a201
 
 
a1d714c
e19a201
 
 
 
a1d714c
e19a201
 
 
19e19cd
 
 
 
 
 
2c38b89
7ea3bc9
2c38b89
7ea3bc9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
---
library_name: transformers
tags:
- seq2seq
license: apache-2.0
datasets:
- Helsinki-NLP/europarl
- Helsinki-NLP/opus-100
language:
- en
- it
base_model:
- bigscience/mt0-small
pipeline_tag: translation
metrics:
- bleu
---

## 🍀 Quadrifoglio - A small model for English -> Italian translation

Quadrifoglio is an encoder-decoder transformer model for English-Italian text translation based on `bigscience/mt0-small`. It was trained on the `en-it` section of `Helsinki-NLP/opus-100` and `Helsinki-NLP/europarl`.


## Usage

```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

# Load model and tokenizer from checkpoint directory
tokenizer = AutoTokenizer.from_pretrained("LeonardPuettmann/mt0-Quadrifoglio-mt-en-it")
model = AutoModelForSeq2SeqLM.from_pretrained("LeonardPuettmann/mt0-Quadrifoglio-mt-en-it")

def generate_response(input_text):
    input_ids = tokenizer("translate English to Italian:" + input_text, return_tensors="pt").input_ids
    output = model.generate(input_ids, max_new_tokens=256)
    return tokenizer.decode(output[0], skip_special_tokens=True)

text_to_translate = "I would like a cup of green tea, please."
response = generate_response(text_to_translate)
print(response)
```

## Evaluation
Done on the Opus 100 test set.

### BLEU
|              | mt0-Quadrifoglio | mt0-small|
|--------------|------------------|----------|
| BLEU Score   | 0.3220           | 0.0159   |
| Precision 1  | 0.6168           | 0.2350   |
| Precision 2  | 0.3773           | 0.0290   |
| Precision 3  | 0.2601           | 0.0076   |
| Precision 4  | 0.1833           | 0.0013   |