--- library_name: transformers tags: - seq2seq license: apache-2.0 datasets: - Helsinki-NLP/europarl - Helsinki-NLP/opus-100 language: - en - it base_model: - bigscience/mt0-small pipeline_tag: translation metrics: - bleu --- ```html ___ _ _ __ _ _ / _ \ _ _ __ _ __| | _ _ (_) / _| ___ __ _ | | (_) ___ | (_) | | || | / _` | / _` | | '_| | | | _| / _ \ / _` | | | | | / _ \ \__\_\ \_,_| \__,_| \__,_| |_| |_| |_| \___/ \__, | |_| |_| \___/ |___/ ``` ## 🍀 Quadrifoglio - A small model for English -> Italian translation Quadrifoglio is an encoder-decoder transformer model for English-Italian text translation based on `bigscience/mt0-small`. It was trained on the `en-it` section of `Helsinki-NLP/opus-100` and `Helsinki-NLP/europarl`. ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load model and tokenizer from checkpoint directory tokenizer = AutoTokenizer.from_pretrained("LeonardPuettmann/mt0-Quadrifoglio-mt-en-it") model = AutoModelForSeq2SeqLM.from_pretrained("LeonardPuettmann/mt0-Quadrifoglio-mt-en-it") def generate_response(input_text): input_ids = tokenizer("translate English to Italian:" + input_text, return_tensors="pt").input_ids output = model.generate(input_ids, max_new_tokens=256) return tokenizer.decode(output[0], skip_special_tokens=True) text_to_translate = "I would like a cup of green tea, please." response = generate_response(text_to_translate) print(response) ``` ## Evaluation Done on the Opus 100 test set. ### BLEU | | Quadrifoglio (this model) | mt0-small| DeepL | |--------------|-------------------------------|----------|--------| | BLEU Score | 0.4816 | 0.0159 | 0.5210 | | Precision 1 | 0.7305 | 0.2350 | 0.7613 | | Precision 2 | 0.5413 | 0.0290 | 0.5853 | | Precision 3 | 0.4289 | 0.0076 | 0.4800 | | Precision 4 | 0.3417 | 0.0013 | 0.3971 |