teowu commited on
Commit
0f6277a
·
verified ·
1 Parent(s): 659641f

Upload modeling_mplug_owl2.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. modeling_mplug_owl2.py +409 -0
modeling_mplug_owl2.py ADDED
@@ -0,0 +1,409 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Haotian Liu & Qinghao Ye (Modified from LLaVA)
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from abc import ABC, abstractmethod
16
+ from typing import List, Optional, Tuple, Union
17
+
18
+ import torch
19
+ import torch.nn as nn
20
+ from torch.nn import CrossEntropyLoss
21
+
22
+ import copy
23
+ import os
24
+ import sys
25
+
26
+ dir_path = os.path.dirname(os.path.realpath(__file__))
27
+ sys.path.insert(0, dir_path)
28
+
29
+ from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, CLIPImageProcessor, LlamaConfig, LlamaModel, LlamaForCausalLM
30
+ from transformers.modeling_outputs import CausalLMOutputWithPast
31
+
32
+ from .configuration_mplug_owl2 import MPLUGOwl2Config, MplugOwlVisionConfig, MplugOwlVisualAbstractorConfig
33
+ from .visual_encoder import MplugOwlVisionModel, MplugOwlVisualAbstractorModel
34
+ from .modeling_llama2 import replace_llama_modality_adaptive
35
+ IGNORE_INDEX = -100
36
+ IMAGE_TOKEN_INDEX = -200
37
+ DEFAULT_IMAGE_TOKEN = "<|image|>"
38
+ from icecream import ic
39
+
40
+ def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
41
+ prompt_chunks = [tokenizer(chunk).input_ids if len(chunk) > 0 else [] for chunk in prompt.split(DEFAULT_IMAGE_TOKEN)]
42
+
43
+ def insert_separator(X, sep):
44
+ return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
45
+
46
+ input_ids = []
47
+ offset = 0
48
+ if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
49
+ offset = 1
50
+ input_ids.append(prompt_chunks[0][0])
51
+
52
+ for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
53
+ input_ids.extend(x[offset:])
54
+
55
+ if return_tensors is not None:
56
+ if return_tensors == 'pt':
57
+ return torch.tensor(input_ids, dtype=torch.long)
58
+ raise ValueError(f'Unsupported tensor type: {return_tensors}')
59
+ return input_ids
60
+
61
+ def expand2square(pil_img, background_color):
62
+ from PIL import Image
63
+ width, height = pil_img.size
64
+ if width == height:
65
+ return pil_img
66
+ elif width > height:
67
+ result = Image.new(pil_img.mode, (width, width), background_color)
68
+ result.paste(pil_img, (0, (width - height) // 2))
69
+ return result
70
+ else:
71
+ result = Image.new(pil_img.mode, (height, height), background_color)
72
+ result.paste(pil_img, ((height - width) // 2, 0))
73
+ return result
74
+
75
+ class MPLUGOwl2MetaModel:
76
+ def __init__(self, config):
77
+ super(MPLUGOwl2MetaModel, self).__init__(config)
78
+ self.vision_model = MplugOwlVisionModel(
79
+ MplugOwlVisionConfig(**config.visual_config["visual_model"])
80
+ )
81
+ self.visual_abstractor = MplugOwlVisualAbstractorModel(
82
+ MplugOwlVisualAbstractorConfig(**config.visual_config["visual_abstractor"]), config.hidden_size
83
+ )
84
+
85
+ def get_vision_tower(self):
86
+ vision_model = getattr(self, 'vision_model', None)
87
+ if type(vision_model) is list:
88
+ vision_model = vision_model[0]
89
+ return vision_model
90
+
91
+ def get_visual_abstractor(self):
92
+ visual_abstractor = getattr(self, 'visual_abstractor', None)
93
+ if type(visual_abstractor) is list:
94
+ visual_abstractor = visual_abstractor[0]
95
+ return visual_abstractor
96
+
97
+
98
+ class MPLUGOwl2MetaForCausalLM(ABC):
99
+ @abstractmethod
100
+ def get_model(self):
101
+ pass
102
+
103
+ def encode_images(self, images):
104
+ image_features = self.get_model().vision_model(images).last_hidden_state
105
+ image_features = self.get_model().visual_abstractor(encoder_hidden_states=image_features).last_hidden_state
106
+ return image_features
107
+
108
+ def prepare_inputs_labels_for_multimodal(
109
+ self, input_ids, attention_mask, past_key_values, labels, images
110
+ ):
111
+ if images is None or input_ids.shape[1] == 1:
112
+ if past_key_values is not None and images is not None and input_ids.shape[1] == 1:
113
+ attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device)
114
+ multiway_indices = torch.zeros_like(input_ids).long().to(self.device)
115
+ return input_ids, multiway_indices, attention_mask, past_key_values, None, labels
116
+
117
+ if type(images) is list or images.ndim == 5:
118
+ concat_images = torch.cat([image for image in images], dim=0)
119
+ image_features = self.encode_images(concat_images)
120
+ split_sizes = [image.shape[0] for image in images]
121
+ image_features = torch.split(image_features, split_sizes, dim=0)
122
+ image_features = [x.flatten(0, 1) for x in image_features]
123
+ else:
124
+ image_features = self.encode_images(images)
125
+
126
+ new_input_embeds = []
127
+ new_modality_indicators = []
128
+ new_labels = [] if labels is not None else None
129
+ cur_image_idx = 0
130
+ for batch_idx, cur_input_ids in enumerate(input_ids):
131
+ if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
132
+ # multimodal LLM, but the current sample is not multimodal
133
+ # FIXME: this is a hacky fix, for deepspeed zero3 to work
134
+ half_len = cur_input_ids.shape[0] // 2
135
+ cur_image_features = image_features[cur_image_idx]
136
+ cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len])
137
+ cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:])
138
+ cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0)
139
+ new_input_embeds.append(cur_input_embeds)
140
+
141
+ cur_modality_indicators = torch.zeros(len(cur_input_embeds)).long().to(self.device)
142
+ new_modality_indicators.append(cur_modality_indicators)
143
+ if labels is not None:
144
+ new_labels.append(labels[batch_idx])
145
+ cur_image_idx += 1
146
+ continue
147
+ image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
148
+ cur_new_input_embeds = []
149
+ cur_modality_indicators = []
150
+ if labels is not None:
151
+ cur_labels = labels[batch_idx]
152
+ cur_new_labels = []
153
+ assert cur_labels.shape == cur_input_ids.shape
154
+ while image_token_indices.numel() > 0:
155
+ cur_image_features = image_features[cur_image_idx]
156
+ image_token_start = image_token_indices[0]
157
+ cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start]))
158
+ cur_new_input_embeds.append(cur_image_features)
159
+
160
+ # Add modality indicator
161
+ assert image_token_start == len(cur_input_ids[:image_token_start])
162
+ cur_modality_indicators.append(torch.zeros(len(cur_input_ids[:image_token_start])).long())
163
+ cur_modality_indicators.append(torch.ones(len(cur_image_features)).long())
164
+
165
+ if labels is not None:
166
+ cur_new_labels.append(cur_labels[:image_token_start])
167
+ cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
168
+ cur_labels = cur_labels[image_token_start+1:]
169
+ cur_image_idx += 1
170
+ cur_input_ids = cur_input_ids[image_token_start+1:]
171
+ image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
172
+ if cur_input_ids.numel() > 0:
173
+ cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids))
174
+ cur_modality_indicators.append(torch.zeros(len(cur_input_ids)).long())
175
+ if labels is not None:
176
+ cur_new_labels.append(cur_labels)
177
+ cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]
178
+ cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
179
+ new_input_embeds.append(cur_new_input_embeds)
180
+
181
+ # Modality
182
+ cur_modality_indicators = [x.to(device=self.device) for x in cur_modality_indicators]
183
+ cur_modality_indicators = torch.cat(cur_modality_indicators, dim=0)
184
+ new_modality_indicators.append(cur_modality_indicators)
185
+
186
+
187
+ if labels is not None:
188
+ cur_new_labels = torch.cat(cur_new_labels, dim=0)
189
+ new_labels.append(cur_new_labels)
190
+
191
+ if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
192
+ max_len = max(x.shape[0] for x in new_input_embeds)
193
+
194
+ # Embedding
195
+ new_input_embeds_align = []
196
+ for cur_new_embed in new_input_embeds:
197
+ cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
198
+ new_input_embeds_align.append(cur_new_embed)
199
+ new_input_embeds = torch.stack(new_input_embeds_align, dim=0)
200
+
201
+ # Modality
202
+ new_modality_indicators_align = []
203
+ for cur_modality_indicator in new_modality_indicators:
204
+ cur_new_embed = torch.cat((cur_modality_indicator, torch.zeros(max_len - cur_modality_indicator.shape[0], dtype=cur_modality_indicator.dtype, device=cur_modality_indicator.device)), dim=0)
205
+ new_modality_indicators_align.append(cur_new_embed)
206
+ new_modality_indicators = torch.stack(new_modality_indicators_align, dim=0)
207
+
208
+ # Label
209
+ if labels is not None:
210
+ new_labels_align = []
211
+ _new_labels = new_labels
212
+ for cur_new_label in new_labels:
213
+ cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0)
214
+ new_labels_align.append(cur_new_label)
215
+ new_labels = torch.stack(new_labels_align, dim=0)
216
+
217
+ # Attention Mask
218
+ if attention_mask is not None:
219
+ new_attention_mask = []
220
+ for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels):
221
+ new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device)
222
+ new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device)
223
+ cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0)
224
+ new_attention_mask.append(cur_new_attention_mask)
225
+ attention_mask = torch.stack(new_attention_mask, dim=0)
226
+ assert attention_mask.shape == new_labels.shape
227
+ else:
228
+ new_input_embeds = torch.stack(new_input_embeds, dim=0)
229
+ new_modality_indicators = torch.stack(new_modality_indicators, dim=0)
230
+ if labels is not None:
231
+ new_labels = torch.stack(new_labels, dim=0)
232
+
233
+ if attention_mask is not None:
234
+ new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device)
235
+ attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
236
+ assert attention_mask.shape == new_input_embeds.shape[:2]
237
+ return None, new_modality_indicators, attention_mask, past_key_values, new_input_embeds, new_labels
238
+
239
+
240
+
241
+ class MPLUGOwl2LlamaModel(MPLUGOwl2MetaModel, LlamaModel):
242
+ config_class = MPLUGOwl2Config
243
+
244
+ def __init__(self, config: MPLUGOwl2Config):
245
+ super(MPLUGOwl2LlamaModel, self).__init__(config)
246
+
247
+
248
+ class MPLUGOwl2LlamaForCausalLM(LlamaForCausalLM, MPLUGOwl2MetaForCausalLM):
249
+ config_class = MPLUGOwl2Config
250
+
251
+ def __init__(self, config):
252
+ super(LlamaForCausalLM, self).__init__(config)
253
+ self.model = MPLUGOwl2LlamaModel(config)
254
+
255
+ self.tokenizer = AutoTokenizer.from_pretrained("q-future/one-align")
256
+ self.image_processor = CLIPImageProcessor.from_pretrained("q-future/one-align")
257
+
258
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
259
+ self.preferential_ids_ = [id_[1] for id_ in self.tokenizer(["excellent","good","fair","poor","bad"])["input_ids"]]
260
+
261
+ # Initialize weights and apply final processing
262
+ self.post_init()
263
+
264
+
265
+ def get_model(self):
266
+ return self.model
267
+
268
+ def chat(self, prompt: str, images, **generate_kwargs):
269
+ input_ids = tokenizer_image_token(prompt, self.tokenizer, -200, return_tensors='pt').unsqueeze(0).to(self.device)
270
+ images = [Image.open("fig/singapore_flyer.jpg"), Image.open("fig/boy_colorful.jpg")]
271
+ images = [expand2square(img, tuple(int(x*255) for x in self.image_processor.image_mean)) for img in images]
272
+ image_tensor = model.image_processor.preprocess(images, return_tensors="pt")["pixel_values"].half().to(self.device)
273
+
274
+ return
275
+ def score(self, images,
276
+ task_: str = "quality",
277
+ input_: str = "image",
278
+ ):
279
+ if not hasattr(self, "weight_tensor"):
280
+ self.weight_tensor = torch.Tensor([5.,4.,3.,2.,1.]).half().to(self.device)
281
+ prompt = "USER: How would you rate the {} of this {}?\n<|image|>\nASSISTANT: The {} of the {} is".format(task_, input_, input_, task_)
282
+ if input_ == "image":
283
+ images = [expand2square(img, tuple(int(x*255) for x in self.image_processor.image_mean)) for img in images]
284
+ input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
285
+ with torch.inference_mode():
286
+ image_tensor = self.image_processor.preprocess(images, return_tensors="pt")["pixel_values"].half().to(self.device)
287
+ output_logits = self(input_ids.repeat(image_tensor.shape[0], 1),
288
+ images=image_tensor)["logits"][:,-1, self.preferential_ids_]
289
+ return torch.softmax(output_logits, -1) @ self.weight_tensor
290
+ else:
291
+ video = [[expand2square(frame, tuple(int(x*255) for x in self.image_processor.image_mean)) for frame in vid] for vid in images]
292
+ input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
293
+ with torch.inference_mode():
294
+ video_tensors = [self.image_processor.preprocess(vid, return_tensors="pt")["pixel_values"].half().to(self.model.device) for vid in video]
295
+ output_logits = self(input_ids.repeat(len(video_tensors), 1),
296
+ images=video_tensors)["logits"][:,-1, self.preferential_ids_]
297
+ return torch.softmax(output_logits, -1) @ self.weight_tensor
298
+
299
+ def forward(
300
+ self,
301
+ input_ids: torch.LongTensor = None,
302
+ # modality_indicators: torch.LongTensor = None,
303
+ attention_mask: Optional[torch.Tensor] = None,
304
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
305
+ inputs_embeds: Optional[torch.FloatTensor] = None,
306
+ labels: Optional[torch.LongTensor] = None,
307
+ use_cache: Optional[bool] = None,
308
+ output_attentions: Optional[bool] = None,
309
+ output_hidden_states: Optional[bool] = None,
310
+ images: Optional[torch.FloatTensor] = None,
311
+ return_dict: Optional[bool] = None,
312
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
313
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
314
+ output_hidden_states = (
315
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
316
+ )
317
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
318
+ input_ids, modality_indicators, attention_mask, past_key_values, inputs_embeds, labels = \
319
+ self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images)
320
+
321
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
322
+ outputs = self.model(
323
+ input_ids=input_ids,
324
+ modality_indicators=modality_indicators,
325
+ attention_mask=attention_mask,
326
+ past_key_values=past_key_values,
327
+ inputs_embeds=inputs_embeds,
328
+ use_cache=use_cache,
329
+ output_attentions=output_attentions,
330
+ output_hidden_states=output_hidden_states,
331
+ return_dict=return_dict
332
+ )
333
+
334
+ hidden_states = outputs[0]
335
+ logits = self.lm_head(hidden_states)
336
+
337
+ loss = None
338
+ if labels is not None:
339
+ # Shift so that tokens < n predict n
340
+ shift_logits = logits[..., :-1, :].contiguous()
341
+ shift_labels = labels[..., 1:].contiguous()
342
+ # Flatten the tokens
343
+ loss_fct = CrossEntropyLoss()
344
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
345
+ shift_labels = shift_labels.view(-1)
346
+ # Enable model/pipeline parallelism
347
+ shift_labels = shift_labels.to(shift_logits.device)
348
+ loss = loss_fct(shift_logits, shift_labels)
349
+
350
+ if not return_dict:
351
+ output = (logits,) + outputs[1:]
352
+ return (loss,) + output if loss is not None else output
353
+
354
+ return CausalLMOutputWithPast(
355
+ loss=loss,
356
+ logits=logits,
357
+ past_key_values=outputs.past_key_values,
358
+ hidden_states=outputs.hidden_states,
359
+ attentions=outputs.attentions,
360
+ )
361
+
362
+ def prepare_inputs_for_generation(
363
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
364
+ ):
365
+ if past_key_values:
366
+ input_ids = input_ids[:, -1:]
367
+
368
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
369
+ if inputs_embeds is not None and past_key_values is None:
370
+ model_inputs = {"inputs_embeds": inputs_embeds}
371
+ else:
372
+ model_inputs = {"input_ids": input_ids}
373
+
374
+ model_inputs.update(
375
+ {
376
+ "past_key_values": past_key_values,
377
+ "use_cache": kwargs.get("use_cache"),
378
+ "attention_mask": attention_mask,
379
+ "images": kwargs.get("images", None),
380
+ }
381
+ )
382
+ return model_inputs
383
+
384
+ AutoConfig.register("mplug_owl2", MPLUGOwl2Config)
385
+ AutoModelForCausalLM.register(MPLUGOwl2Config, MPLUGOwl2LlamaForCausalLM)
386
+
387
+ replace_llama_modality_adaptive()
388
+
389
+ if __name__ == "__main__":
390
+ config = MPLUGOwl2Config.from_pretrained('q-future/one-align')
391
+ from icecream import ic
392
+ # config = MPLUGOwl2Config()
393
+ model = AutoModelForCausalLM(config)
394
+
395
+ images = torch.randn(2, 3, 448, 448)
396
+ input_ids = torch.cat([
397
+ torch.ones(8).long(), torch.tensor([-1]*1).long(), torch.ones(8).long(), torch.tensor([-1]*1).long(), torch.ones(8).long()
398
+ ], dim=0).unsqueeze(0)
399
+ labels = input_ids.clone()
400
+ labels[labels < 0] = -100
401
+
402
+ # image_feature = model.encode_images(images)
403
+ # ic(image_feature.shape)
404
+
405
+ output = model(images=images, input_ids=input_ids, labels=labels)
406
+ ic(output.loss)
407
+ ic(output.logits.shape)
408
+
409
+ model.save_pretrained('/cpfs01/shared/public/test/tmp_owl')