teowu commited on
Commit
972f2c2
·
verified ·
1 Parent(s): fb0edb1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -32
README.md CHANGED
@@ -1,35 +1,6 @@
1
- ## Performance
2
 
3
- *Updated Feb 1st.*
4
-
5
- ### Low-level Question-Answering
6
-
7
- This model has reached 75.90\%(*13\% better than previous version*)/76.52\%(*10\% better than previous version*) on Q-Bench A1 *dev/test* (multi-choice questions).
8
-
9
- It also outperforms the following close-source models with much larger model capacities:
10
-
11
- | Model | *dev* | *test* |
12
- | ---- | ---- | ---- |
13
- | **Co-Instruct-Preview (mPLUG-Owl2) (This Model)** | **75.90\%** | **76.52\%** |
14
- | \*GPT-4V-Turbo | 74.41\% | 74.10\% |
15
- | \*Qwen-VL-**Max** | 73.63\% | 73.90\% |
16
- | \*GPT-4V (Nov. 2023) | 71.78\% | 73.44\% |
17
- | \*Gemini-Pro | 68.16\% | 69.46\% |
18
- | Q-Instruct (mPLUG-Owl2, Nov. 2023) | 67.42\% | 70.43\% |
19
- | \*Qwen-VL-Plus | 66.01\% | 68.93\% |
20
- | mPLUG-Owl2 | 62.14\% | 62.68\% |
21
-
22
- \*: Proprietary Models.
23
-
24
- #### Image/Video Quality Assessment
25
-
26
- | Model | live | agi | livec | test_spaq | csiq | test_kadid | test_koniq | konvid | maxwell_test |
27
- |--------------------------|--------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
28
- |**Co-Instruct-Preview (mPLUG-Owl2) (This Model)** | **0.803/0.756** | **0.719**/0.732 | **0.827/0.835** | **0.946/0.937** | **0.711/0.727** | **0.782/0.766** | 0.886/**0.935** | **0.818/0.790** | **0.735/0.714** |
29
- | Q-Instruct (mPLUG-Owl2, Nov. 2023) | 0.749/0.747 | 0.710/**0.753** | 0.781/0.791 | 0.921/0.917 | 0.693/0.723 | 0.670/0.665 | **0.904**/0.921 | 0.766/0.738 | 0.650/0.649 |
30
-
31
-
32
- We are also constructing multi-image benchmark sets (image pairs, triple-quadruple images), and the results on multi-image benchmarks will be released soon!
33
 
34
  ## Load Model
35
 
@@ -37,7 +8,7 @@ We are also constructing multi-image benchmark sets (image pairs, triple-quadrup
37
  import torch
38
  from transformers import AutoModelForCausalLM
39
 
40
- model = AutoModelForCausalLM.from_pretrained("q-future/co-instruct-preview",
41
  trust_remote_code=True,
42
  torch_dtype=torch.float16,
43
  attn_implementation="eager",
 
1
+ ## News
2
 
3
+ A technical report for this model is coming soon.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
  ## Load Model
6
 
 
8
  import torch
9
  from transformers import AutoModelForCausalLM
10
 
11
+ model = AutoModelForCausalLM.from_pretrained("q-future/co-instruct",
12
  trust_remote_code=True,
13
  torch_dtype=torch.float16,
14
  attn_implementation="eager",