qddwudan commited on
Commit
1f03d8b
1 Parent(s): dda5cea

First LunarLander model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 282.04 +/- 13.98
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1584fe8dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1584fe8e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1584fe8ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1584fe8f70>", "_build": "<function ActorCriticPolicy._build at 0x7f1584fe9000>", "forward": "<function ActorCriticPolicy.forward at 0x7f1584fe9090>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1584fe9120>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1584fe91b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1584fe9240>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1584fe92d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1584fe9360>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1584fe93f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1584fde680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687484808634989080, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGY5GT02abs+qynRvQKIn76SdlE8llEHvQAAAAAAAAAA5sIgvRR8lLpMdBO0gQ6Urj2yUjrFT5gzAACAPwAAgD9N6iw9YrqYPpbaOj2FoZG+TxETPQxlNj4AAAAAAAAAAM1cuDtG85k/KtPhPIp52b5jDxS9Hs4APQAAAAAAAAAAZrRyPFcpXz4qATE+2ml6vsEa9z2zTdc8AAAAAAAAAAAApIc7tcFzPg30Dz73qDi+l5KPPSrVwT0AAAAAAAAAALOMFj4IrQE/uOV3vbU4v771kh49Q/9bvAAAAAAAAAAAZk5NvAROyD57DdO9to5XvjFESz2plbO9AAAAAAAAAAAzbTY9pEdvu6b+HLzDS5M8u/aevCYwfD0AAIA/AACAP0ZuZD5VuWw+hk0jvgOMp74AH5Q9xvgYvAAAAAAAAAAAzaQIPBu+mj0kjJs9wPBUvsEQvrsfDAm8AAAAAAAAAAAzqTw8rn2NuquNojUijw8wSEZKu5h0tbQAAIA/AACAPzPgurwqihM/ZYVeurdher4b1Ey9Mo7qvQAAAAAAAAAAMxsgO+cArz/aU308/dHWvqE2Qr1mplu9AAAAAAAAAACAnoI9KRw9ul6CL7kPRte0cJ3vu3PfTjgAAIA/AACAP9qsHD5bY7k+5DKWvdOBhL4G5Gg9lmUZvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG3st+kP+XKMAWyUTTMBjAF0lEdArdBLdHlOoHV9lChoBkdAbqNPgvUSZmgHS/loCEdArdCCBI4EOnV9lChoBkdAboGAlOXVsmgHTRcBaAhHQK3R/FAmiQF1fZQoaAZHQHGfbIkqto1oB0v2aAhHQK3SQSkCV8l1fZQoaAZHQG/mdqcmShdoB00JAWgIR0Ct0tHDBMzudX2UKGgGR0Bw/5H/cWTHaAdNHwFoCEdArdMdpblijXV9lChoBkdAcg9T6BRQ8GgHTU0BaAhHQK3TbH9WIXV1fZQoaAZHQHChrR4QjD9oB00vAWgIR0Ct1FpOWSlndX2UKGgGR0BmTlNahYeUaAdNZwNoCEdArdU3icXm/3V9lChoBkdAcLUYgJTl1mgHTS4BaAhHQK3VRzdUKiR1fZQoaAZHQHEDWXw9aEBoB0v9aAhHQK3VjQbdadN1fZQoaAZHQHATq9wm3ORoB0vuaAhHQK3VnQ+EAYJ1fZQoaAZHQHE9yyt3fQ9oB00WAWgIR0Ct1bdCVryldX2UKGgGR0BxuWT6i0v5aAdNHgFoCEdArdYNkFwDNnV9lChoBkdAb11NpM6BAmgHTQIBaAhHQK3WJnzQNTd1fZQoaAZHQHFVOYlY2bZoB0v3aAhHQK3WddqtYCB1fZQoaAZHQHB2boGIKtxoB00nAWgIR0Ct1namoBJadX2UKGgGR0BydIjLSuyNaAdNIwFoCEdArdeXWBjFynV9lChoBkdAbRbeNT987mgHTRIBaAhHQK3Y5ha1Tit1fZQoaAZHQGym+5e7cwhoB0v/aAhHQK3Y8f9xZMd1fZQoaAZHQHB5Szw+dLBoB00rAWgIR0Ct2Sb4SHuadX2UKGgGR0Bwo+rksBhhaAdNGAFoCEdArdmZ88cMmXV9lChoBkdAcBivCuU2UGgHTQgBaAhHQK3aMwu/UON1fZQoaAZHQHFXRsqJ/G5oB007AWgIR0Ct2nxMFlkIdX2UKGgGR0Bvb573PAwgaAdL9GgIR0Ct2rCZWq95dX2UKGgGR0By/yDrZ8KHaAdNCQFoCEdArdspreqJdnV9lChoBkdAcJZJ8OTaCmgHTREBaAhHQK3bLSqlxfh1fZQoaAZHQHGn7VjI7vJoB0vqaAhHQK3bO7gbZOB1fZQoaAZHQG4pDIq9XcRoB00VAWgIR0Ct2567mMfjdX2UKGgGR0Bwc79/BnBdaAdNAwFoCEdArdulhNM4+HV9lChoBkdAcNKg62fCh2gHTRQBaAhHQK3br95Qgs91fZQoaAZHQG1i8VxjriVoB0v7aAhHQK3cV24/eLx1fZQoaAZHQG6aE9lmOENoB00GAWgIR0Ct3YJ+lTFVdX2UKGgGR0ByRS/1xsEaaAdNFgFoCEdArd4Bsj3VTnV9lChoBkdAcGVCGvfTC2gHTR4BaAhHQK3fEUpuuRt1fZQoaAZHQG11cujASFpoB008AWgIR0Ct3zMVk+X7dX2UKGgGR0Bw8g8DB/I9aAdNEwFoCEdAreAUwpON53V9lChoBkdAcQMbqyGBWmgHTQcBaAhHQK3g/u4wyqN1fZQoaAZHQHI8JxNqQBBoB01WAWgIR0Ct4ad87ZFodX2UKGgGR0BwnDf0mMOxaAdNCQFoCEdAreHg4VARkHV9lChoBkdAcMtN8E3bVWgHTUQBaAhHQK3h9uKoAGV1fZQoaAZHQHESMSK3uu1oB00XAWgIR0Ct4j4S6DoRdX2UKGgGR0ByZ4RChN/OaAdNKgFoCEdAreK+6NEPUnV9lChoBkdAcJYeUILPU2gHTToBaAhHQK3kwFvAGjd1fZQoaAZHQHBNXGjsUqRoB00IAWgIR0Ct5UOpjtojdX2UKGgGR0BwkRIf8uSPaAdNBAFoCEdArfELakAPu3V9lChoBkdAcdXUXpGFz2gHS+RoCEdArfGijpLVWnV9lChoBkdAcdRPLgXMyWgHTQcBaAhHQK3z4SkCV8l1fZQoaAZHQHCryMxXXAdoB00tAWgIR0Ct8/SvcJt0dX2UKGgGR0BvYbpC8e0YaAdL9WgIR0Ct9EniNsFddX2UKGgGR0ByTzlLeyiVaAdL+mgIR0Ct9TfFJg9edX2UKGgGR0ByhidRR/EwaAdNBQFoCEdArfXUUdq+J3V9lChoBkdAcuDF+NLlFWgHS/poCEdArfXj5ftx/HV9lChoBkdAcXZomG/N7mgHTTUBaAhHQK33RINmUW51fZQoaAZHQHMefk/8l5ZoB000AWgIR0Ct99aDPGADdX2UKGgGR0BT9NthuwX7aAdLz2gIR0Ct+Ae2VmjCdX2UKGgGR0BwFAPmPo3aaAdNCgFoCEdArfhEfigkC3V9lChoBkdAarHlHSWqtGgHTaMCaAhHQK34rU2kzoF1fZQoaAZHQHEZhKQJXyRoB00hAWgIR0Ct+WZ8rqdIdX2UKGgGR0BbZwHiWE9MaAdN6ANoCEdArfmMRpUPx3V9lChoBkdAVVMJx//ecmgHTegDaAhHQK35mH446wN1fZQoaAZHQHM2ID1XeWRoB0vgaAhHQK357YigTRJ1fZQoaAZHQG9Cpo9LYf5oB01SAWgIR0Ct+gWQnx8VdX2UKGgGR0BwQKTdLxqgaAdNDQFoCEdArfqAblzU7XV9lChoBkdAbTAZhrnDBWgHTUUBaAhHQK37dv+fh/B1fZQoaAZHQHCF540Mw11oB00mAWgIR0Ct+5r0Bfa6dX2UKGgGR0ByAMlv60pmaAdNNwFoCEdArfw9vMr3CnV9lChoBkdAb4FBlcyFf2gHTTwBaAhHQK38UYZ2pyZ1fZQoaAZHQG2AUzTF2mpoB00MAWgIR0Ct/FkZrHlwdX2UKGgGR0BwUm/JvHcUaAdNAAFoCEdArfzwJb+tKnV9lChoBkdAcdCFGG21D2gHTRwBaAhHQK39Ox/ustF1fZQoaAZHQHK4JwbVBldoB00nAWgIR0Ct/UK/M4cWdX2UKGgGR0Bwzsdp7CzkaAdNEwFoCEdArf2gwZflZHV9lChoBkdAc77WpZOi4GgHS+1oCEdArf2uqm0mdHV9lChoBkdAcUHprk8zRGgHTRsBaAhHQK3+Sl2vB8B1fZQoaAZHQFD41rIo3JhoB03oA2gIR0Ct/niswL3LdX2UKGgGR0BwpPRb8m8eaAdNIAFoCEdArf6AkJKJ23V9lChoBkdAcn+wmE4//2gHTQcBaAhHQK3+iLP2PDJ1fZQoaAZHQHIw67VawEBoB000AWgIR0Ct/ykn1FpgdX2UKGgGR0ByBB+UhV2iaAdNHgFoCEdArf9jksBhhHV9lChoBkdAbs6mO2iL22gHTQEBaAhHQK3/4hi9Zid1fZQoaAZHQHMWO0ojOcFoB00KAWgIR0Ct/+fx2B8QdX2UKGgGR0BxO9iONo8IaAdL5GgIR0Ct//l2/zredX2UKGgGR0ByqQVBUrCnaAdNDgFoCEdArgCxFZxJd3V9lChoBkdAcCck7OmixmgHTRcBaAhHQK4A0Lqlgtx1fZQoaAZHQHCJ45o4+8poB00CAWgIR0CuAVoicG1QdX2UKGgGR0ByWHQ1JlJ6aAdL7GgIR0CuAWulXRw7dX2UKGgGR0Bx2+dtl7MQaAdNIgFoCEdArgGaQYDT0HV9lChoBkdAcT95Sm65G2gHTR4BaAhHQK4CM1uzhP11fZQoaAZHQHJFdl/YraxoB009AWgIR0CuAl6xHG0edX2UKGgGR8ABdayKNyYHaAdLvWgIR0CuAmXKbKA8dX2UKGgGR0BuY5gAp8WsaAdNNAFoCEdArgNMSCe2/nV9lChoBkdAcDdDn/1g6WgHTTABaAhHQK4Da8p1A7h1fZQoaAZHQHBRlklNUOxoB00yAWgIR0CuA4Xc580DdX2UKGgGR0BywwsOG0u2aAdNCwFoCEdArgOH7rLQonV9lChoBkdAcWlBcRlH0GgHTTkBaAhHQK4DmiyIHkd1fZQoaAZHQHKOKYNRWLhoB0vkaAhHQK4DuH1vl2h1fZQoaAZHQCVym0mdAgRoB0vzaAhHQK4D279ycTd1fZQoaAZHQHC3w0Kqn3toB01CAWgIR0CuBQWP91lodX2UKGgGR0BvM4/7iyY5aAdNCgFoCEdArgUCAlOXV3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49b32677a39d38679a341cbbf818698a8b3a637da41c0666334a413931384134
3
+ size 146731
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1584fe8dc0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1584fe8e50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1584fe8ee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1584fe8f70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f1584fe9000>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f1584fe9090>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1584fe9120>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1584fe91b0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f1584fe9240>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1584fe92d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1584fe9360>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1584fe93f0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f1584fde680>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1687484808634989080,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGY5GT02abs+qynRvQKIn76SdlE8llEHvQAAAAAAAAAA5sIgvRR8lLpMdBO0gQ6Urj2yUjrFT5gzAACAPwAAgD9N6iw9YrqYPpbaOj2FoZG+TxETPQxlNj4AAAAAAAAAAM1cuDtG85k/KtPhPIp52b5jDxS9Hs4APQAAAAAAAAAAZrRyPFcpXz4qATE+2ml6vsEa9z2zTdc8AAAAAAAAAAAApIc7tcFzPg30Dz73qDi+l5KPPSrVwT0AAAAAAAAAALOMFj4IrQE/uOV3vbU4v771kh49Q/9bvAAAAAAAAAAAZk5NvAROyD57DdO9to5XvjFESz2plbO9AAAAAAAAAAAzbTY9pEdvu6b+HLzDS5M8u/aevCYwfD0AAIA/AACAP0ZuZD5VuWw+hk0jvgOMp74AH5Q9xvgYvAAAAAAAAAAAzaQIPBu+mj0kjJs9wPBUvsEQvrsfDAm8AAAAAAAAAAAzqTw8rn2NuquNojUijw8wSEZKu5h0tbQAAIA/AACAPzPgurwqihM/ZYVeurdher4b1Ey9Mo7qvQAAAAAAAAAAMxsgO+cArz/aU308/dHWvqE2Qr1mplu9AAAAAAAAAACAnoI9KRw9ul6CL7kPRte0cJ3vu3PfTjgAAIA/AACAP9qsHD5bY7k+5DKWvdOBhL4G5Gg9lmUZvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG3st+kP+XKMAWyUTTMBjAF0lEdArdBLdHlOoHV9lChoBkdAbqNPgvUSZmgHS/loCEdArdCCBI4EOnV9lChoBkdAboGAlOXVsmgHTRcBaAhHQK3R/FAmiQF1fZQoaAZHQHGfbIkqto1oB0v2aAhHQK3SQSkCV8l1fZQoaAZHQG/mdqcmShdoB00JAWgIR0Ct0tHDBMzudX2UKGgGR0Bw/5H/cWTHaAdNHwFoCEdArdMdpblijXV9lChoBkdAcg9T6BRQ8GgHTU0BaAhHQK3TbH9WIXV1fZQoaAZHQHChrR4QjD9oB00vAWgIR0Ct1FpOWSlndX2UKGgGR0BmTlNahYeUaAdNZwNoCEdArdU3icXm/3V9lChoBkdAcLUYgJTl1mgHTS4BaAhHQK3VRzdUKiR1fZQoaAZHQHEDWXw9aEBoB0v9aAhHQK3VjQbdadN1fZQoaAZHQHATq9wm3ORoB0vuaAhHQK3VnQ+EAYJ1fZQoaAZHQHE9yyt3fQ9oB00WAWgIR0Ct1bdCVryldX2UKGgGR0BxuWT6i0v5aAdNHgFoCEdArdYNkFwDNnV9lChoBkdAb11NpM6BAmgHTQIBaAhHQK3WJnzQNTd1fZQoaAZHQHFVOYlY2bZoB0v3aAhHQK3WddqtYCB1fZQoaAZHQHB2boGIKtxoB00nAWgIR0Ct1namoBJadX2UKGgGR0BydIjLSuyNaAdNIwFoCEdArdeXWBjFynV9lChoBkdAbRbeNT987mgHTRIBaAhHQK3Y5ha1Tit1fZQoaAZHQGym+5e7cwhoB0v/aAhHQK3Y8f9xZMd1fZQoaAZHQHB5Szw+dLBoB00rAWgIR0Ct2Sb4SHuadX2UKGgGR0Bwo+rksBhhaAdNGAFoCEdArdmZ88cMmXV9lChoBkdAcBivCuU2UGgHTQgBaAhHQK3aMwu/UON1fZQoaAZHQHFXRsqJ/G5oB007AWgIR0Ct2nxMFlkIdX2UKGgGR0Bvb573PAwgaAdL9GgIR0Ct2rCZWq95dX2UKGgGR0By/yDrZ8KHaAdNCQFoCEdArdspreqJdnV9lChoBkdAcJZJ8OTaCmgHTREBaAhHQK3bLSqlxfh1fZQoaAZHQHGn7VjI7vJoB0vqaAhHQK3bO7gbZOB1fZQoaAZHQG4pDIq9XcRoB00VAWgIR0Ct2567mMfjdX2UKGgGR0Bwc79/BnBdaAdNAwFoCEdArdulhNM4+HV9lChoBkdAcNKg62fCh2gHTRQBaAhHQK3br95Qgs91fZQoaAZHQG1i8VxjriVoB0v7aAhHQK3cV24/eLx1fZQoaAZHQG6aE9lmOENoB00GAWgIR0Ct3YJ+lTFVdX2UKGgGR0ByRS/1xsEaaAdNFgFoCEdArd4Bsj3VTnV9lChoBkdAcGVCGvfTC2gHTR4BaAhHQK3fEUpuuRt1fZQoaAZHQG11cujASFpoB008AWgIR0Ct3zMVk+X7dX2UKGgGR0Bw8g8DB/I9aAdNEwFoCEdAreAUwpON53V9lChoBkdAcQMbqyGBWmgHTQcBaAhHQK3g/u4wyqN1fZQoaAZHQHI8JxNqQBBoB01WAWgIR0Ct4ad87ZFodX2UKGgGR0BwnDf0mMOxaAdNCQFoCEdAreHg4VARkHV9lChoBkdAcMtN8E3bVWgHTUQBaAhHQK3h9uKoAGV1fZQoaAZHQHESMSK3uu1oB00XAWgIR0Ct4j4S6DoRdX2UKGgGR0ByZ4RChN/OaAdNKgFoCEdAreK+6NEPUnV9lChoBkdAcJYeUILPU2gHTToBaAhHQK3kwFvAGjd1fZQoaAZHQHBNXGjsUqRoB00IAWgIR0Ct5UOpjtojdX2UKGgGR0BwkRIf8uSPaAdNBAFoCEdArfELakAPu3V9lChoBkdAcdXUXpGFz2gHS+RoCEdArfGijpLVWnV9lChoBkdAcdRPLgXMyWgHTQcBaAhHQK3z4SkCV8l1fZQoaAZHQHCryMxXXAdoB00tAWgIR0Ct8/SvcJt0dX2UKGgGR0BvYbpC8e0YaAdL9WgIR0Ct9EniNsFddX2UKGgGR0ByTzlLeyiVaAdL+mgIR0Ct9TfFJg9edX2UKGgGR0ByhidRR/EwaAdNBQFoCEdArfXUUdq+J3V9lChoBkdAcuDF+NLlFWgHS/poCEdArfXj5ftx/HV9lChoBkdAcXZomG/N7mgHTTUBaAhHQK33RINmUW51fZQoaAZHQHMefk/8l5ZoB000AWgIR0Ct99aDPGADdX2UKGgGR0BT9NthuwX7aAdLz2gIR0Ct+Ae2VmjCdX2UKGgGR0BwFAPmPo3aaAdNCgFoCEdArfhEfigkC3V9lChoBkdAarHlHSWqtGgHTaMCaAhHQK34rU2kzoF1fZQoaAZHQHEZhKQJXyRoB00hAWgIR0Ct+WZ8rqdIdX2UKGgGR0BbZwHiWE9MaAdN6ANoCEdArfmMRpUPx3V9lChoBkdAVVMJx//ecmgHTegDaAhHQK35mH446wN1fZQoaAZHQHM2ID1XeWRoB0vgaAhHQK357YigTRJ1fZQoaAZHQG9Cpo9LYf5oB01SAWgIR0Ct+gWQnx8VdX2UKGgGR0BwQKTdLxqgaAdNDQFoCEdArfqAblzU7XV9lChoBkdAbTAZhrnDBWgHTUUBaAhHQK37dv+fh/B1fZQoaAZHQHCF540Mw11oB00mAWgIR0Ct+5r0Bfa6dX2UKGgGR0ByAMlv60pmaAdNNwFoCEdArfw9vMr3CnV9lChoBkdAb4FBlcyFf2gHTTwBaAhHQK38UYZ2pyZ1fZQoaAZHQG2AUzTF2mpoB00MAWgIR0Ct/FkZrHlwdX2UKGgGR0BwUm/JvHcUaAdNAAFoCEdArfzwJb+tKnV9lChoBkdAcdCFGG21D2gHTRwBaAhHQK39Ox/ustF1fZQoaAZHQHK4JwbVBldoB00nAWgIR0Ct/UK/M4cWdX2UKGgGR0Bwzsdp7CzkaAdNEwFoCEdArf2gwZflZHV9lChoBkdAc77WpZOi4GgHS+1oCEdArf2uqm0mdHV9lChoBkdAcUHprk8zRGgHTRsBaAhHQK3+Sl2vB8B1fZQoaAZHQFD41rIo3JhoB03oA2gIR0Ct/niswL3LdX2UKGgGR0BwpPRb8m8eaAdNIAFoCEdArf6AkJKJ23V9lChoBkdAcn+wmE4//2gHTQcBaAhHQK3+iLP2PDJ1fZQoaAZHQHIw67VawEBoB000AWgIR0Ct/ykn1FpgdX2UKGgGR0ByBB+UhV2iaAdNHgFoCEdArf9jksBhhHV9lChoBkdAbs6mO2iL22gHTQEBaAhHQK3/4hi9Zid1fZQoaAZHQHMWO0ojOcFoB00KAWgIR0Ct/+fx2B8QdX2UKGgGR0BxO9iONo8IaAdL5GgIR0Ct//l2/zredX2UKGgGR0ByqQVBUrCnaAdNDgFoCEdArgCxFZxJd3V9lChoBkdAcCck7OmixmgHTRcBaAhHQK4A0Lqlgtx1fZQoaAZHQHCJ45o4+8poB00CAWgIR0CuAVoicG1QdX2UKGgGR0ByWHQ1JlJ6aAdL7GgIR0CuAWulXRw7dX2UKGgGR0Bx2+dtl7MQaAdNIgFoCEdArgGaQYDT0HV9lChoBkdAcT95Sm65G2gHTR4BaAhHQK4CM1uzhP11fZQoaAZHQHJFdl/YraxoB009AWgIR0CuAl6xHG0edX2UKGgGR8ABdayKNyYHaAdLvWgIR0CuAmXKbKA8dX2UKGgGR0BuY5gAp8WsaAdNNAFoCEdArgNMSCe2/nV9lChoBkdAcDdDn/1g6WgHTTABaAhHQK4Da8p1A7h1fZQoaAZHQHBRlklNUOxoB00yAWgIR0CuA4Xc580DdX2UKGgGR0BywwsOG0u2aAdNCwFoCEdArgOH7rLQonV9lChoBkdAcWlBcRlH0GgHTTkBaAhHQK4DmiyIHkd1fZQoaAZHQHKOKYNRWLhoB0vkaAhHQK4DuH1vl2h1fZQoaAZHQCVym0mdAgRoB0vzaAhHQK4D279ycTd1fZQoaAZHQHC3w0Kqn3toB01CAWgIR0CuBQWP91lodX2UKGgGR0BvM4/7iyY5aAdNCgFoCEdArgUCAlOXV3VlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9cbff0fcd2fcef471c4b26d0f11d7287e38a7bef9e5ecf7a08b517f7b588f34f
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e15c01a60f48908a5e13e38183a6cfbd4f1bb644e844c7981b43a5ed6f97a58a
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (175 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 282.0392088, "std_reward": 13.977035467526717, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-23T02:19:00.707068"}