Quentin Gallouédec commited on
Commit
62cf1c1
1 Parent(s): 4e530b0

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLanderContinuous-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLanderContinuous-v2
16
+ type: LunarLanderContinuous-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -25.50 +/- 105.78
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **LunarLanderContinuous-v2**
25
+ This is a trained model of a **A2C** agent playing **LunarLanderContinuous-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo a2c --env LunarLanderContinuous-v2 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo a2c --env LunarLanderContinuous-v2 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo a2c --env LunarLanderContinuous-v2 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo a2c --env LunarLanderContinuous-v2 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo a2c --env LunarLanderContinuous-v2 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo a2c --env LunarLanderContinuous-v2 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('ent_coef', 0.0),
66
+ ('gae_lambda', 0.9),
67
+ ('gamma', 0.99),
68
+ ('learning_rate', 'lin_7e-4'),
69
+ ('max_grad_norm', 0.5),
70
+ ('n_envs', 4),
71
+ ('n_steps', 8),
72
+ ('n_timesteps', 5000000.0),
73
+ ('normalize', True),
74
+ ('normalize_advantage', False),
75
+ ('policy', 'MlpPolicy'),
76
+ ('policy_kwargs', 'dict(log_std_init=-2, ortho_init=False)'),
77
+ ('use_rms_prop', True),
78
+ ('use_sde', True),
79
+ ('vf_coef', 0.4),
80
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
81
+ ```
a2c-LunarLanderContinuous-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55d56258b839f346d752b6c725fec719a5e76fe59f1cce1076e1ab08e4b3c681
3
+ size 107052
a2c-LunarLanderContinuous-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
a2c-LunarLanderContinuous-v2/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa106c4fd30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa106c4fdc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa106c4fe50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa106c4fee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa106c4ff70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa106c51040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa106c510d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa106c51160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa106c511f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa106c51280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa106c51310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa106c513a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fa106c50f80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 8
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False]",
45
+ "bounded_above": "[False False False False False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVDgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAIC/AACAv5RoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAAAAAIA/AACAP5RoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgtjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 2
54
+ ],
55
+ "low": "[-1. -1.]",
56
+ "high": "[1. 1.]",
57
+ "bounded_below": "[ True True]",
58
+ "bounded_above": "[ True True]",
59
+ "_np_random": "RandomState(MT19937)"
60
+ },
61
+ "n_envs": 1,
62
+ "num_timesteps": 5000000,
63
+ "_total_timesteps": 5000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": 0,
66
+ "action_noise": null,
67
+ "start_time": 1670923575747221069,
68
+ "learning_rate": {
69
+ ":type:": "<class 'function'>",
70
+ ":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTRsBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
71
+ },
72
+ "tensorboard_log": "runs/LunarLanderContinuous-v2__a2c__1809578713__1670923573/LunarLanderContinuous-v2",
73
+ "lr_schedule": {
74
+ ":type:": "<class 'function'>",
75
+ ":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTRsBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
76
+ },
77
+ "_last_obs": null,
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAGamnTnJubQ/wEv5PK35NT2xELO5cuDhuwAAAAAAAAAAmglau6SftD+ejKy+EPsSPKwZfTsIV5w9AAAAAAAAAACatc67/qW1P+WTI7/3xLo+UL/vOwo2FD4AAAAAAAAAAGZu5zsQ9LM/JiI3P1cjZb59+QW8BO4lvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwiGlIwBQ5R0lFKULg=="
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2qhOB7IQSMCUhpRSlIwBbJRL34wBdJRHQMHwnRb8m8d1fZQoaAZoCWgPQwgAjj17LrRkwJSGlFKUaBVNSQJoFkdAwfH66pYLcHV9lChoBmgJaA9DCIkMq3ij9GlAlIaUUpRoFU2rAWgWR0DB8jBmmLtNdX2UKGgGaAloD0MIev60UZ2nV0CUhpRSlGgVTXwDaBZHQMHyvrS3LFJ1fZQoaAZoCWgPQwhUVWgglrNOwJSGlFKUaBVL4mgWR0DB8xoh8pkPdX2UKGgGaAloD0MIIXh8e1dQYsCUhpRSlGgVTegDaBZHQMH0d9cB2fV1fZQoaAZoCWgPQwhoBYas7pxgwJSGlFKUaBVNyAFoFkdAwfVDMvAXVXV9lChoBmgJaA9DCBGnk2z1VGZAlIaUUpRoFU0QA2gWR0DB9lAVO9FndX2UKGgGaAloD0MIaksd5PWAGMCUhpRSlGgVTegDaBZHQMH2jo7V8Tl1fZQoaAZoCWgPQwj11VWBWtBJwJSGlFKUaBVLgGgWR0DB9syesgdPdX2UKGgGaAloD0MI46lHGtzvZsCUhpRSlGgVTVACaBZHQMH3AIwM6R11fZQoaAZoCWgPQwjMmljgqwZpwJSGlFKUaBVNwwJoFkdAwffteNT99HV9lChoBmgJaA9DCI7MI3+wemLAlIaUUpRoFU0AAmgWR0DB+Ig5aNdadX2UKGgGaAloD0MIE9Iag85WY0CUhpRSlGgVTRMCaBZHQMH6N4xtYSx1fZQoaAZoCWgPQwjsF+yGbV5ZQJSGlFKUaBVNQQNoFkdAwfo+WjXWfHV9lChoBmgJaA9DCAyTqYJRbTDAlIaUUpRoFU3oA2gWR0DB+lbDjzZpdX2UKGgGaAloD0MIC0Pk9HU9Z8CUhpRSlGgVTagBaBZHQMH6XS8zyjJ1fZQoaAZoCWgPQwh4msx4WyhXwJSGlFKUaBVNcwFoFkdAwfs1f4yoGnV9lChoBmgJaA9DCJKVXwZj5l1AlIaUUpRoFU1uAmgWR0DB/AMvM8oydX2UKGgGaAloD0MIa/RqgFK8ZMCUhpRSlGgVTcICaBZHQMH8ShY3eep1fZQoaAZoCWgPQwiNtiqJbOlgwJSGlFKUaBVNogFoFkdAwfymGmDUVnV9lChoBmgJaA9DCBe4PNaMUlXAlIaUUpRoFUvmaBZHQMH85Zs0pEx1fZQoaAZoCWgPQwjQ7SWN0b44wJSGlFKUaBVN6ANoFkdAwf0u+lj3EnV9lChoBmgJaA9DCN6rViZ8x2HAlIaUUpRoFU3XAWgWR0DB/VSRGMGYdX2UKGgGaAloD0MIzeodbgdhZUCUhpRSlGgVTfcCaBZHQMICd4dp7C11fZQoaAZoCWgPQwihSs0eaJFGQJSGlFKUaBVN6ANoFkdAwgMbQk5ZKXV9lChoBmgJaA9DCPbRqSuf5es/lIaUUpRoFUvzaBZHQMIDfff4yoJ1fZQoaAZoCWgPQwjWHCCYoz9DQJSGlFKUaBVNyQNoFkdAwgO+0ALiM3V9lChoBmgJaA9DCBh47j1ckFrAlIaUUpRoFU3oA2gWR0DCBAkqvvBrdX2UKGgGaAloD0MI/DkF+dk0OcCUhpRSlGgVTQcBaBZHQMIEPJ5mh/R1fZQoaAZoCWgPQwi/KaxUUHRTwJSGlFKUaBVLxWgWR0DCBD0fozN2dX2UKGgGaAloD0MIrvVFQluQSMCUhpRSlGgVS9ZoFkdAwgSzfuTibXV9lChoBmgJaA9DCCoAxjNoUFvAlIaUUpRoFU1WAWgWR0DCBMYKa5PNdX2UKGgGaAloD0MIJoqQup2ha0CUhpRSlGgVTdACaBZHQMIFE+v6j351fZQoaAZoCWgPQwhp/S0BeMhlQJSGlFKUaBVNNgJoFkdAwgdRVMEidXV9lChoBmgJaA9DCEJbzqW4TFjAlIaUUpRoFU3oA2gWR0DCB7Cbz9S/dX2UKGgGaAloD0MII0xRLo3XU8CUhpRSlGgVTegDaBZHQMIIlw8GLUF1fZQoaAZoCWgPQwhSR8fVyC7iP5SGlFKUaBVN6ANoFkdAwgiwgK4QSXV9lChoBmgJaA9DCPSJPEk6IGjAlIaUUpRoFU2WAmgWR0DCDBQgzP8idX2UKGgGaAloD0MIMQbWcfzAHMCUhpRSlGgVTegDaBZHQMIMOPFefI11fZQoaAZoCWgPQwg8iJ0pdC5dQJSGlFKUaBVN7wJoFkdAwgxgIMz/InV9lChoBmgJaA9DCPmHLT0ad3DAlIaUUpRoFU3KA2gWR0DCDGOShakidX2UKGgGaAloD0MI290DdF+cT8CUhpRSlGgVTQwBaBZHQMIMyDin5zp1fZQoaAZoCWgPQwi+Zrls9EplQJSGlFKUaBVNaQFoFkdAwgz5pV0cO3V9lChoBmgJaA9DCHkiiPNwPkjAlIaUUpRoFUvAaBZHQMINT0dilSF1fZQoaAZoCWgPQwjpfeNrT1ZnQJSGlFKUaBVNaAFoFkdAwg4rpRGc4HV9lChoBmgJaA9DCPVnP1LE1mbAlIaUUpRoFU0SA2gWR0DCDrQfbKzSdX2UKGgGaAloD0MI/zwNGCSsU8CUhpRSlGgVS9NoFkdAwg7wUQkHEHV9lChoBmgJaA9DCOTbuwb9RW3AlIaUUpRoFU3RA2gWR0DCD0jI1cdHdX2UKGgGaAloD0MIjliLTwGIMsCUhpRSlGgVTegDaBZHQMIQ1d7v5QB1fZQoaAZoCWgPQwgIzEOmfIRhQJSGlFKUaBVNNgNoFkdAwhGNEMLF43V9lChoBmgJaA9DCNEGYAMilGTAlIaUUpRoFU0ZA2gWR0DCEbf/95yEdX2UKGgGaAloD0MIXRd+cL5OaECUhpRSlGgVTQ4BaBZHQMIRxu8brC51fZQoaAZoCWgPQwgudvusMlMlwJSGlFKUaBVLsGgWR0DCEizWEsasdX2UKGgGaAloD0MI29styQF0UMCUhpRSlGgVTegDaBZHQMIShCb+cYt1fZQoaAZoCWgPQwhMT1jiAVFgQJSGlFKUaBVNYgFoFkdAwhM6gYgq3HV9lChoBmgJaA9DCLB2FOeoiFTAlIaUUpRoFU1XAWgWR0DCE5fgtOEedX2UKGgGaAloD0MIsDxITxH1ZsCUhpRSlGgVTfICaBZHQMIT7E6cRUZ1fZQoaAZoCWgPQwgmjjwQWexgQJSGlFKUaBVNPwNoFkdAwhP6kdmxuHV9lChoBmgJaA9DCPMAFvn1g0DAlIaUUpRoFUu5aBZHQMIUGb52yLR1fZQoaAZoCWgPQwgqjZjZZ/lnQJSGlFKUaBVNQAFoFkdAwhQlGx2SuHV9lChoBmgJaA9DCGe2K/RBiWTAlIaUUpRoFU2TAmgWR0DCFqIQWepXdX2UKGgGaAloD0MI+IvZktUxYECUhpRSlGgVTV8DaBZHQMIXLvYe1a51fZQoaAZoCWgPQwg9Y1+y8TJbwJSGlFKUaBVN6ANoFkdAwhgBWattAXV9lChoBmgJaA9DCEDbatYZQWlAlIaUUpRoFUvMaBZHQMIYLokiUxF1fZQoaAZoCWgPQwgUr7K2KVY+wJSGlFKUaBVN6ANoFkdAwht5o1UEPnV9lChoBmgJaA9DCGLWi6GcKlrAlIaUUpRoFU2IAWgWR0DCG4XQjUutdX2UKGgGaAloD0MIs0P8w5aiQsCUhpRSlGgVTZcBaBZHQMIcJMxoIv91fZQoaAZoCWgPQwhUVtP1RDhqwJSGlFKUaBVNnQJoFkdAwh2FZvDP4XV9lChoBmgJaA9DCLJl+boMiVDAlIaUUpRoFU3oA2gWR0DCHpwJmdy1dX2UKGgGaAloD0MIRE30+SilQ8CUhpRSlGgVTegDaBZHQMIe44TK1Xx1fZQoaAZoCWgPQwh/TkF+thhmwJSGlFKUaBVNqgNoFkdAwh/7x2B8QnV9lChoBmgJaA9DCI+pu7IL6GvAlIaUUpRoFU1xA2gWR0DCIWBiobXIdX2UKGgGaAloD0MIPpY+dEEqYUCUhpRSlGgVTTADaBZHQMIiLJDNQj51fZQoaAZoCWgPQwhSEDy+vWxWwJSGlFKUaBVN6ANoFkdAwiNnmZmZmnV9lChoBmgJaA9DCPBPqRLlp2HAlIaUUpRoFU3oA2gWR0DCJIIyZa3adX2UKGgGaAloD0MIExCTcCH8Z8CUhpRSlGgVTUoCaBZHQMIk7At4A0d1fZQoaAZoCWgPQwir6A/NPD1MwJSGlFKUaBVNjwFoFkdAwiUdQk5ZKXV9lChoBmgJaA9DCD6UaMnjymDAlIaUUpRoFU3oA2gWR0DCJa9kauOkdX2UKGgGaAloD0MIajF4mHYjZcCUhpRSlGgVTT0DaBZHQMIn0Prv9cd1fZQoaAZoCWgPQwhA3UCB9zhmwJSGlFKUaBVNrAJoFkdAwifc2RaHK3V9lChoBmgJaA9DCPjddMuO9WFAlIaUUpRoFU1WA2gWR0DCKCYRK6FudX2UKGgGaAloD0MISMX/HVGlUsCUhpRSlGgVTVABaBZHQMIosdhJAdJ1fZQoaAZoCWgPQwgBTBk4oG0qwJSGlFKUaBVN6ANoFkdAwilBpSrHVHV9lChoBmgJaA9DCJ0rSgnBNWfAlIaUUpRoFU2pAmgWR0DCKeW1MM7VdX2UKGgGaAloD0MIlkIglzjwbsCUhpRSlGgVTRYDaBZHQMIqwXnhbW51fZQoaAZoCWgPQwiTxJJy9/5UwJSGlFKUaBVNcAJoFkdAwirzdIoVmHV9lChoBmgJaA9DCODXSBKE5FrAlIaUUpRoFU06AWgWR0DCKwNTJhfCdX2UKGgGaAloD0MIDtdqD3uwUsCUhpRSlGgVTVcBaBZHQMIr2DpLVWl1fZQoaAZoCWgPQwjjUL8LW6VqwJSGlFKUaBVNoQNoFkdAwiyoEWZZ0XV9lChoBmgJaA9DCJtxGqIKEUfAlIaUUpRoFU0FAWgWR0DCLbmK64DtdX2UKGgGaAloD0MIle6us6HLbMCUhpRSlGgVTcIDaBZHQMIvOOxB3Rp1fZQoaAZoCWgPQwghdqbQed1VwJSGlFKUaBVN6ANoFkdAwi9K+UQkHHV9lChoBmgJaA9DCHmRCfg1JkfAlIaUUpRoFU3oA2gWR0DCMDAu5BkadX2UKGgGaAloD0MIeuQPBp7RYECUhpRSlGgVTVcBaBZHQMIwTwUYbbV1fZQoaAZoCWgPQwioHJPF/ZBcwJSGlFKUaBVNgQFoFkdAwjBxufmLcnV9lChoBmgJaA9DCMST3czo7lxAlIaUUpRoFU27A2gWR0DCMU4ZydWidX2UKGgGaAloD0MIm6p7ZHPzYUCUhpRSlGgVTU0CaBZHQMIyR+XZ5A11fZQoaAZoCWgPQwgTZARUOMdawJSGlFKUaBVNiwJoFkdAwjJdWK/EfnV9lChoBmgJaA9DCFfQtMTKAErAlIaUUpRoFUusaBZHQMIy5+xwAEN1ZS4="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 156250,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-LunarLanderContinuous-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99996ff27f28075788b682a402a4832d7b450bcdeb7ebc747962cf9ed77e80d8
3
+ size 42878
a2c-LunarLanderContinuous-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdbc82ac63422952ebfe54015e30608cb4a99275cd07caf2fc6f5870c275f8ae
3
+ size 43582
a2c-LunarLanderContinuous-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-LunarLanderContinuous-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
args.yml ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - a2c
4
+ - - device
5
+ - auto
6
+ - - env
7
+ - LunarLanderContinuous-v2
8
+ - - env_kwargs
9
+ - null
10
+ - - eval_episodes
11
+ - 5
12
+ - - eval_freq
13
+ - 25000
14
+ - - gym_packages
15
+ - []
16
+ - - hyperparams
17
+ - null
18
+ - - log_folder
19
+ - logs
20
+ - - log_interval
21
+ - -1
22
+ - - max_total_trials
23
+ - null
24
+ - - n_eval_envs
25
+ - 1
26
+ - - n_evaluations
27
+ - null
28
+ - - n_jobs
29
+ - 1
30
+ - - n_startup_trials
31
+ - 10
32
+ - - n_timesteps
33
+ - -1
34
+ - - n_trials
35
+ - 500
36
+ - - no_optim_plots
37
+ - false
38
+ - - num_threads
39
+ - -1
40
+ - - optimization_log_path
41
+ - null
42
+ - - optimize_hyperparameters
43
+ - false
44
+ - - progress
45
+ - false
46
+ - - pruner
47
+ - median
48
+ - - sampler
49
+ - tpe
50
+ - - save_freq
51
+ - -1
52
+ - - save_replay_buffer
53
+ - false
54
+ - - seed
55
+ - 1809578713
56
+ - - storage
57
+ - null
58
+ - - study_name
59
+ - null
60
+ - - tensorboard_log
61
+ - runs/LunarLanderContinuous-v2__a2c__1809578713__1670923573
62
+ - - track
63
+ - true
64
+ - - trained_agent
65
+ - ''
66
+ - - truncate_last_trajectory
67
+ - true
68
+ - - uuid
69
+ - false
70
+ - - vec_env
71
+ - dummy
72
+ - - verbose
73
+ - 1
74
+ - - wandb_entity
75
+ - null
76
+ - - wandb_project_name
77
+ - quantitative-benchmark
78
+ - - yaml_file
79
+ - null
config.yml ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - ent_coef
3
+ - 0.0
4
+ - - gae_lambda
5
+ - 0.9
6
+ - - gamma
7
+ - 0.99
8
+ - - learning_rate
9
+ - lin_7e-4
10
+ - - max_grad_norm
11
+ - 0.5
12
+ - - n_envs
13
+ - 4
14
+ - - n_steps
15
+ - 8
16
+ - - n_timesteps
17
+ - 5000000.0
18
+ - - normalize
19
+ - true
20
+ - - normalize_advantage
21
+ - false
22
+ - - policy
23
+ - MlpPolicy
24
+ - - policy_kwargs
25
+ - dict(log_std_init=-2, ortho_init=False)
26
+ - - use_rms_prop
27
+ - true
28
+ - - use_sde
29
+ - true
30
+ - - vf_coef
31
+ - 0.4
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:093e2e8be3ef5e851532728e3a84ba1317a0af7047644c47b1018d139780eb50
3
+ size 255693
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -25.5006485, "std_reward": 105.7824751432848, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T14:49:08.198048"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16bca459128241285cfcba045bec109285de61b2f1603705848c3dbcf089bbea
3
+ size 287358
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88c0905ed74eb5a9086cc93d0d9cf70e9a265f2dad074a338f07b8ccf2985e4b
3
+ size 4323