Quentin Gallouédec
commited on
Commit
•
62cf1c1
1
Parent(s):
4e530b0
Initial commit
Browse files- .gitattributes +1 -0
- README.md +81 -0
- a2c-LunarLanderContinuous-v2.zip +3 -0
- a2c-LunarLanderContinuous-v2/_stable_baselines3_version +1 -0
- a2c-LunarLanderContinuous-v2/data +106 -0
- a2c-LunarLanderContinuous-v2/policy.optimizer.pth +3 -0
- a2c-LunarLanderContinuous-v2/policy.pth +3 -0
- a2c-LunarLanderContinuous-v2/pytorch_variables.pth +3 -0
- a2c-LunarLanderContinuous-v2/system_info.txt +7 -0
- args.yml +79 -0
- config.yml +31 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLanderContinuous-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLanderContinuous-v2
|
16 |
+
type: LunarLanderContinuous-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -25.50 +/- 105.78
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **LunarLanderContinuous-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **LunarLanderContinuous-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo a2c --env LunarLanderContinuous-v2 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo a2c --env LunarLanderContinuous-v2 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo a2c --env LunarLanderContinuous-v2 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo a2c --env LunarLanderContinuous-v2 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo a2c --env LunarLanderContinuous-v2 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo a2c --env LunarLanderContinuous-v2 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('ent_coef', 0.0),
|
66 |
+
('gae_lambda', 0.9),
|
67 |
+
('gamma', 0.99),
|
68 |
+
('learning_rate', 'lin_7e-4'),
|
69 |
+
('max_grad_norm', 0.5),
|
70 |
+
('n_envs', 4),
|
71 |
+
('n_steps', 8),
|
72 |
+
('n_timesteps', 5000000.0),
|
73 |
+
('normalize', True),
|
74 |
+
('normalize_advantage', False),
|
75 |
+
('policy', 'MlpPolicy'),
|
76 |
+
('policy_kwargs', 'dict(log_std_init=-2, ortho_init=False)'),
|
77 |
+
('use_rms_prop', True),
|
78 |
+
('use_sde', True),
|
79 |
+
('vf_coef', 0.4),
|
80 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
81 |
+
```
|
a2c-LunarLanderContinuous-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55d56258b839f346d752b6c725fec719a5e76fe59f1cce1076e1ab08e4b3c681
|
3 |
+
size 107052
|
a2c-LunarLanderContinuous-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a6
|
a2c-LunarLanderContinuous-v2/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa106c4fd30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa106c4fdc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa106c4fe50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa106c4fee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa106c4ff70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa106c51040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa106c510d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa106c51160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa106c511f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa106c51280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa106c51310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa106c513a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fa106c50f80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
8
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVDgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAIC/AACAv5RoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAAAAAIA/AACAP5RoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgtjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
2
|
54 |
+
],
|
55 |
+
"low": "[-1. -1.]",
|
56 |
+
"high": "[1. 1.]",
|
57 |
+
"bounded_below": "[ True True]",
|
58 |
+
"bounded_above": "[ True True]",
|
59 |
+
"_np_random": "RandomState(MT19937)"
|
60 |
+
},
|
61 |
+
"n_envs": 1,
|
62 |
+
"num_timesteps": 5000000,
|
63 |
+
"_total_timesteps": 5000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": 0,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1670923575747221069,
|
68 |
+
"learning_rate": {
|
69 |
+
":type:": "<class 'function'>",
|
70 |
+
":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTRsBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
71 |
+
},
|
72 |
+
"tensorboard_log": "runs/LunarLanderContinuous-v2__a2c__1809578713__1670923573/LunarLanderContinuous-v2",
|
73 |
+
"lr_schedule": {
|
74 |
+
":type:": "<class 'function'>",
|
75 |
+
":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTRsBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
76 |
+
},
|
77 |
+
"_last_obs": null,
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAGamnTnJubQ/wEv5PK35NT2xELO5cuDhuwAAAAAAAAAAmglau6SftD+ejKy+EPsSPKwZfTsIV5w9AAAAAAAAAACatc67/qW1P+WTI7/3xLo+UL/vOwo2FD4AAAAAAAAAAGZu5zsQ9LM/JiI3P1cjZb59+QW8BO4lvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwiGlIwBQ5R0lFKULg=="
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2qhOB7IQSMCUhpRSlIwBbJRL34wBdJRHQMHwnRb8m8d1fZQoaAZoCWgPQwgAjj17LrRkwJSGlFKUaBVNSQJoFkdAwfH66pYLcHV9lChoBmgJaA9DCIkMq3ij9GlAlIaUUpRoFU2rAWgWR0DB8jBmmLtNdX2UKGgGaAloD0MIev60UZ2nV0CUhpRSlGgVTXwDaBZHQMHyvrS3LFJ1fZQoaAZoCWgPQwhUVWgglrNOwJSGlFKUaBVL4mgWR0DB8xoh8pkPdX2UKGgGaAloD0MIIXh8e1dQYsCUhpRSlGgVTegDaBZHQMH0d9cB2fV1fZQoaAZoCWgPQwhoBYas7pxgwJSGlFKUaBVNyAFoFkdAwfVDMvAXVXV9lChoBmgJaA9DCBGnk2z1VGZAlIaUUpRoFU0QA2gWR0DB9lAVO9FndX2UKGgGaAloD0MIaksd5PWAGMCUhpRSlGgVTegDaBZHQMH2jo7V8Tl1fZQoaAZoCWgPQwj11VWBWtBJwJSGlFKUaBVLgGgWR0DB9syesgdPdX2UKGgGaAloD0MI46lHGtzvZsCUhpRSlGgVTVACaBZHQMH3AIwM6R11fZQoaAZoCWgPQwjMmljgqwZpwJSGlFKUaBVNwwJoFkdAwffteNT99HV9lChoBmgJaA9DCI7MI3+wemLAlIaUUpRoFU0AAmgWR0DB+Ig5aNdadX2UKGgGaAloD0MIE9Iag85WY0CUhpRSlGgVTRMCaBZHQMH6N4xtYSx1fZQoaAZoCWgPQwjsF+yGbV5ZQJSGlFKUaBVNQQNoFkdAwfo+WjXWfHV9lChoBmgJaA9DCAyTqYJRbTDAlIaUUpRoFU3oA2gWR0DB+lbDjzZpdX2UKGgGaAloD0MIC0Pk9HU9Z8CUhpRSlGgVTagBaBZHQMH6XS8zyjJ1fZQoaAZoCWgPQwh4msx4WyhXwJSGlFKUaBVNcwFoFkdAwfs1f4yoGnV9lChoBmgJaA9DCJKVXwZj5l1AlIaUUpRoFU1uAmgWR0DB/AMvM8oydX2UKGgGaAloD0MIa/RqgFK8ZMCUhpRSlGgVTcICaBZHQMH8ShY3eep1fZQoaAZoCWgPQwiNtiqJbOlgwJSGlFKUaBVNogFoFkdAwfymGmDUVnV9lChoBmgJaA9DCBe4PNaMUlXAlIaUUpRoFUvmaBZHQMH85Zs0pEx1fZQoaAZoCWgPQwjQ7SWN0b44wJSGlFKUaBVN6ANoFkdAwf0u+lj3EnV9lChoBmgJaA9DCN6rViZ8x2HAlIaUUpRoFU3XAWgWR0DB/VSRGMGYdX2UKGgGaAloD0MIzeodbgdhZUCUhpRSlGgVTfcCaBZHQMICd4dp7C11fZQoaAZoCWgPQwihSs0eaJFGQJSGlFKUaBVN6ANoFkdAwgMbQk5ZKXV9lChoBmgJaA9DCPbRqSuf5es/lIaUUpRoFUvzaBZHQMIDfff4yoJ1fZQoaAZoCWgPQwjWHCCYoz9DQJSGlFKUaBVNyQNoFkdAwgO+0ALiM3V9lChoBmgJaA9DCBh47j1ckFrAlIaUUpRoFU3oA2gWR0DCBAkqvvBrdX2UKGgGaAloD0MI/DkF+dk0OcCUhpRSlGgVTQcBaBZHQMIEPJ5mh/R1fZQoaAZoCWgPQwi/KaxUUHRTwJSGlFKUaBVLxWgWR0DCBD0fozN2dX2UKGgGaAloD0MIrvVFQluQSMCUhpRSlGgVS9ZoFkdAwgSzfuTibXV9lChoBmgJaA9DCCoAxjNoUFvAlIaUUpRoFU1WAWgWR0DCBMYKa5PNdX2UKGgGaAloD0MIJoqQup2ha0CUhpRSlGgVTdACaBZHQMIFE+v6j351fZQoaAZoCWgPQwhp/S0BeMhlQJSGlFKUaBVNNgJoFkdAwgdRVMEidXV9lChoBmgJaA9DCEJbzqW4TFjAlIaUUpRoFU3oA2gWR0DCB7Cbz9S/dX2UKGgGaAloD0MII0xRLo3XU8CUhpRSlGgVTegDaBZHQMIIlw8GLUF1fZQoaAZoCWgPQwhSR8fVyC7iP5SGlFKUaBVN6ANoFkdAwgiwgK4QSXV9lChoBmgJaA9DCPSJPEk6IGjAlIaUUpRoFU2WAmgWR0DCDBQgzP8idX2UKGgGaAloD0MIMQbWcfzAHMCUhpRSlGgVTegDaBZHQMIMOPFefI11fZQoaAZoCWgPQwg8iJ0pdC5dQJSGlFKUaBVN7wJoFkdAwgxgIMz/InV9lChoBmgJaA9DCPmHLT0ad3DAlIaUUpRoFU3KA2gWR0DCDGOShakidX2UKGgGaAloD0MI290DdF+cT8CUhpRSlGgVTQwBaBZHQMIMyDin5zp1fZQoaAZoCWgPQwi+Zrls9EplQJSGlFKUaBVNaQFoFkdAwgz5pV0cO3V9lChoBmgJaA9DCHkiiPNwPkjAlIaUUpRoFUvAaBZHQMINT0dilSF1fZQoaAZoCWgPQwjpfeNrT1ZnQJSGlFKUaBVNaAFoFkdAwg4rpRGc4HV9lChoBmgJaA9DCPVnP1LE1mbAlIaUUpRoFU0SA2gWR0DCDrQfbKzSdX2UKGgGaAloD0MI/zwNGCSsU8CUhpRSlGgVS9NoFkdAwg7wUQkHEHV9lChoBmgJaA9DCOTbuwb9RW3AlIaUUpRoFU3RA2gWR0DCD0jI1cdHdX2UKGgGaAloD0MIjliLTwGIMsCUhpRSlGgVTegDaBZHQMIQ1d7v5QB1fZQoaAZoCWgPQwgIzEOmfIRhQJSGlFKUaBVNNgNoFkdAwhGNEMLF43V9lChoBmgJaA9DCNEGYAMilGTAlIaUUpRoFU0ZA2gWR0DCEbf/95yEdX2UKGgGaAloD0MIXRd+cL5OaECUhpRSlGgVTQ4BaBZHQMIRxu8brC51fZQoaAZoCWgPQwgudvusMlMlwJSGlFKUaBVLsGgWR0DCEizWEsasdX2UKGgGaAloD0MI29styQF0UMCUhpRSlGgVTegDaBZHQMIShCb+cYt1fZQoaAZoCWgPQwhMT1jiAVFgQJSGlFKUaBVNYgFoFkdAwhM6gYgq3HV9lChoBmgJaA9DCLB2FOeoiFTAlIaUUpRoFU1XAWgWR0DCE5fgtOEedX2UKGgGaAloD0MIsDxITxH1ZsCUhpRSlGgVTfICaBZHQMIT7E6cRUZ1fZQoaAZoCWgPQwgmjjwQWexgQJSGlFKUaBVNPwNoFkdAwhP6kdmxuHV9lChoBmgJaA9DCPMAFvn1g0DAlIaUUpRoFUu5aBZHQMIUGb52yLR1fZQoaAZoCWgPQwgqjZjZZ/lnQJSGlFKUaBVNQAFoFkdAwhQlGx2SuHV9lChoBmgJaA9DCGe2K/RBiWTAlIaUUpRoFU2TAmgWR0DCFqIQWepXdX2UKGgGaAloD0MI+IvZktUxYECUhpRSlGgVTV8DaBZHQMIXLvYe1a51fZQoaAZoCWgPQwg9Y1+y8TJbwJSGlFKUaBVN6ANoFkdAwhgBWattAXV9lChoBmgJaA9DCEDbatYZQWlAlIaUUpRoFUvMaBZHQMIYLokiUxF1fZQoaAZoCWgPQwgUr7K2KVY+wJSGlFKUaBVN6ANoFkdAwht5o1UEPnV9lChoBmgJaA9DCGLWi6GcKlrAlIaUUpRoFU2IAWgWR0DCG4XQjUutdX2UKGgGaAloD0MIs0P8w5aiQsCUhpRSlGgVTZcBaBZHQMIcJMxoIv91fZQoaAZoCWgPQwhUVtP1RDhqwJSGlFKUaBVNnQJoFkdAwh2FZvDP4XV9lChoBmgJaA9DCLJl+boMiVDAlIaUUpRoFU3oA2gWR0DCHpwJmdy1dX2UKGgGaAloD0MIRE30+SilQ8CUhpRSlGgVTegDaBZHQMIe44TK1Xx1fZQoaAZoCWgPQwh/TkF+thhmwJSGlFKUaBVNqgNoFkdAwh/7x2B8QnV9lChoBmgJaA9DCI+pu7IL6GvAlIaUUpRoFU1xA2gWR0DCIWBiobXIdX2UKGgGaAloD0MIPpY+dEEqYUCUhpRSlGgVTTADaBZHQMIiLJDNQj51fZQoaAZoCWgPQwhSEDy+vWxWwJSGlFKUaBVN6ANoFkdAwiNnmZmZmnV9lChoBmgJaA9DCPBPqRLlp2HAlIaUUpRoFU3oA2gWR0DCJIIyZa3adX2UKGgGaAloD0MIExCTcCH8Z8CUhpRSlGgVTUoCaBZHQMIk7At4A0d1fZQoaAZoCWgPQwir6A/NPD1MwJSGlFKUaBVNjwFoFkdAwiUdQk5ZKXV9lChoBmgJaA9DCD6UaMnjymDAlIaUUpRoFU3oA2gWR0DCJa9kauOkdX2UKGgGaAloD0MIajF4mHYjZcCUhpRSlGgVTT0DaBZHQMIn0Prv9cd1fZQoaAZoCWgPQwhA3UCB9zhmwJSGlFKUaBVNrAJoFkdAwifc2RaHK3V9lChoBmgJaA9DCPjddMuO9WFAlIaUUpRoFU1WA2gWR0DCKCYRK6FudX2UKGgGaAloD0MISMX/HVGlUsCUhpRSlGgVTVABaBZHQMIosdhJAdJ1fZQoaAZoCWgPQwgBTBk4oG0qwJSGlFKUaBVN6ANoFkdAwilBpSrHVHV9lChoBmgJaA9DCJ0rSgnBNWfAlIaUUpRoFU2pAmgWR0DCKeW1MM7VdX2UKGgGaAloD0MIlkIglzjwbsCUhpRSlGgVTRYDaBZHQMIqwXnhbW51fZQoaAZoCWgPQwiTxJJy9/5UwJSGlFKUaBVNcAJoFkdAwirzdIoVmHV9lChoBmgJaA9DCODXSBKE5FrAlIaUUpRoFU06AWgWR0DCKwNTJhfCdX2UKGgGaAloD0MIDtdqD3uwUsCUhpRSlGgVTVcBaBZHQMIr2DpLVWl1fZQoaAZoCWgPQwjjUL8LW6VqwJSGlFKUaBVNoQNoFkdAwiyoEWZZ0XV9lChoBmgJaA9DCJtxGqIKEUfAlIaUUpRoFU0FAWgWR0DCLbmK64DtdX2UKGgGaAloD0MIle6us6HLbMCUhpRSlGgVTcIDaBZHQMIvOOxB3Rp1fZQoaAZoCWgPQwghdqbQed1VwJSGlFKUaBVN6ANoFkdAwi9K+UQkHHV9lChoBmgJaA9DCHmRCfg1JkfAlIaUUpRoFU3oA2gWR0DCMDAu5BkadX2UKGgGaAloD0MIeuQPBp7RYECUhpRSlGgVTVcBaBZHQMIwTwUYbbV1fZQoaAZoCWgPQwioHJPF/ZBcwJSGlFKUaBVNgQFoFkdAwjBxufmLcnV9lChoBmgJaA9DCMST3czo7lxAlIaUUpRoFU27A2gWR0DCMU4ZydWidX2UKGgGaAloD0MIm6p7ZHPzYUCUhpRSlGgVTU0CaBZHQMIyR+XZ5A11fZQoaAZoCWgPQwgTZARUOMdawJSGlFKUaBVNiwJoFkdAwjJdWK/EfnV9lChoBmgJaA9DCFfQtMTKAErAlIaUUpRoFUusaBZHQMIy5+xwAEN1ZS4="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 156250,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-LunarLanderContinuous-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99996ff27f28075788b682a402a4832d7b450bcdeb7ebc747962cf9ed77e80d8
|
3 |
+
size 42878
|
a2c-LunarLanderContinuous-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cdbc82ac63422952ebfe54015e30608cb4a99275cd07caf2fc6f5870c275f8ae
|
3 |
+
size 43582
|
a2c-LunarLanderContinuous-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-LunarLanderContinuous-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.9.12
|
3 |
+
- Stable-Baselines3: 1.8.0a6
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
args.yml
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- a2c
|
4 |
+
- - device
|
5 |
+
- auto
|
6 |
+
- - env
|
7 |
+
- LunarLanderContinuous-v2
|
8 |
+
- - env_kwargs
|
9 |
+
- null
|
10 |
+
- - eval_episodes
|
11 |
+
- 5
|
12 |
+
- - eval_freq
|
13 |
+
- 25000
|
14 |
+
- - gym_packages
|
15 |
+
- []
|
16 |
+
- - hyperparams
|
17 |
+
- null
|
18 |
+
- - log_folder
|
19 |
+
- logs
|
20 |
+
- - log_interval
|
21 |
+
- -1
|
22 |
+
- - max_total_trials
|
23 |
+
- null
|
24 |
+
- - n_eval_envs
|
25 |
+
- 1
|
26 |
+
- - n_evaluations
|
27 |
+
- null
|
28 |
+
- - n_jobs
|
29 |
+
- 1
|
30 |
+
- - n_startup_trials
|
31 |
+
- 10
|
32 |
+
- - n_timesteps
|
33 |
+
- -1
|
34 |
+
- - n_trials
|
35 |
+
- 500
|
36 |
+
- - no_optim_plots
|
37 |
+
- false
|
38 |
+
- - num_threads
|
39 |
+
- -1
|
40 |
+
- - optimization_log_path
|
41 |
+
- null
|
42 |
+
- - optimize_hyperparameters
|
43 |
+
- false
|
44 |
+
- - progress
|
45 |
+
- false
|
46 |
+
- - pruner
|
47 |
+
- median
|
48 |
+
- - sampler
|
49 |
+
- tpe
|
50 |
+
- - save_freq
|
51 |
+
- -1
|
52 |
+
- - save_replay_buffer
|
53 |
+
- false
|
54 |
+
- - seed
|
55 |
+
- 1809578713
|
56 |
+
- - storage
|
57 |
+
- null
|
58 |
+
- - study_name
|
59 |
+
- null
|
60 |
+
- - tensorboard_log
|
61 |
+
- runs/LunarLanderContinuous-v2__a2c__1809578713__1670923573
|
62 |
+
- - track
|
63 |
+
- true
|
64 |
+
- - trained_agent
|
65 |
+
- ''
|
66 |
+
- - truncate_last_trajectory
|
67 |
+
- true
|
68 |
+
- - uuid
|
69 |
+
- false
|
70 |
+
- - vec_env
|
71 |
+
- dummy
|
72 |
+
- - verbose
|
73 |
+
- 1
|
74 |
+
- - wandb_entity
|
75 |
+
- null
|
76 |
+
- - wandb_project_name
|
77 |
+
- quantitative-benchmark
|
78 |
+
- - yaml_file
|
79 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - ent_coef
|
3 |
+
- 0.0
|
4 |
+
- - gae_lambda
|
5 |
+
- 0.9
|
6 |
+
- - gamma
|
7 |
+
- 0.99
|
8 |
+
- - learning_rate
|
9 |
+
- lin_7e-4
|
10 |
+
- - max_grad_norm
|
11 |
+
- 0.5
|
12 |
+
- - n_envs
|
13 |
+
- 4
|
14 |
+
- - n_steps
|
15 |
+
- 8
|
16 |
+
- - n_timesteps
|
17 |
+
- 5000000.0
|
18 |
+
- - normalize
|
19 |
+
- true
|
20 |
+
- - normalize_advantage
|
21 |
+
- false
|
22 |
+
- - policy
|
23 |
+
- MlpPolicy
|
24 |
+
- - policy_kwargs
|
25 |
+
- dict(log_std_init=-2, ortho_init=False)
|
26 |
+
- - use_rms_prop
|
27 |
+
- true
|
28 |
+
- - use_sde
|
29 |
+
- true
|
30 |
+
- - vf_coef
|
31 |
+
- 0.4
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:093e2e8be3ef5e851532728e3a84ba1317a0af7047644c47b1018d139780eb50
|
3 |
+
size 255693
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -25.5006485, "std_reward": 105.7824751432848, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T14:49:08.198048"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16bca459128241285cfcba045bec109285de61b2f1603705848c3dbcf089bbea
|
3 |
+
size 287358
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88c0905ed74eb5a9086cc93d0d9cf70e9a265f2dad074a338f07b8ccf2985e4b
|
3 |
+
size 4323
|