Quentin Gallouédec
commited on
Commit
•
c9ce6bd
1
Parent(s):
42bed05
Initial commit
Browse files- .gitattributes +1 -0
- README.md +75 -0
- a2c-MountainCarContinuous-v0.zip +3 -0
- a2c-MountainCarContinuous-v0/_stable_baselines3_version +1 -0
- a2c-MountainCarContinuous-v0/data +103 -0
- a2c-MountainCarContinuous-v0/policy.optimizer.pth +3 -0
- a2c-MountainCarContinuous-v0/policy.pth +3 -0
- a2c-MountainCarContinuous-v0/pytorch_variables.pth +3 -0
- a2c-MountainCarContinuous-v0/system_info.txt +7 -0
- args.yml +79 -0
- config.yml +19 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- MountainCarContinuous-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: MountainCarContinuous-v0
|
16 |
+
type: MountainCarContinuous-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 91.58 +/- 0.10
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **MountainCarContinuous-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **MountainCarContinuous-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo a2c --env MountainCarContinuous-v0 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo a2c --env MountainCarContinuous-v0 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo a2c --env MountainCarContinuous-v0 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo a2c --env MountainCarContinuous-v0 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo a2c --env MountainCarContinuous-v0 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo a2c --env MountainCarContinuous-v0 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('ent_coef', 0.0),
|
66 |
+
('n_envs', 4),
|
67 |
+
('n_steps', 100),
|
68 |
+
('n_timesteps', 100000.0),
|
69 |
+
('normalize', True),
|
70 |
+
('policy', 'MlpPolicy'),
|
71 |
+
('policy_kwargs', 'dict(log_std_init=0.0, ortho_init=False)'),
|
72 |
+
('sde_sample_freq', 16),
|
73 |
+
('use_sde', True),
|
74 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
75 |
+
```
|
a2c-MountainCarContinuous-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58a8fb7d2bb1218150da1624a8759497735664022703c8508b16ae2081db4e04
|
3 |
+
size 96525
|
a2c-MountainCarContinuous-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a6
|
a2c-MountainCarContinuous-v0/data
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe7e9690d30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe7e9690dc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe7e9690e50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe7e9690ee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe7e9690f70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe7e9692040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe7e96920d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe7e9692160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe7e96921f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe7e9692280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe7e9692310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe7e96923a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fe7e968e8c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVpwAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRHAAAAAAAAAACMCm9ydGhvX2luaXSUiYwPb3B0aW1pemVyX2NsYXNzlIwTdG9yY2gub3B0aW0ucm1zcHJvcJSMB1JNU3Byb3CUk5SMEG9wdGltaXplcl9rd2FyZ3OUfZQojAVhbHBoYZRHP++uFHrhR66MA2Vwc5RHPuT4tYjjaPGMDHdlaWdodF9kZWNheZRLAHV1Lg==",
|
26 |
+
"log_std_init": 0.0,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
2
|
41 |
+
],
|
42 |
+
"low": "[-1.2 -0.07]",
|
43 |
+
"high": "[0.6 0.07]",
|
44 |
+
"bounded_below": "[ True True]",
|
45 |
+
"bounded_above": "[ True True]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAIC/lGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAgD+UaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
1
|
54 |
+
],
|
55 |
+
"low": "[-1.]",
|
56 |
+
"high": "[1.]",
|
57 |
+
"bounded_below": "[ True]",
|
58 |
+
"bounded_above": "[ True]",
|
59 |
+
"_np_random": "RandomState(MT19937)"
|
60 |
+
},
|
61 |
+
"n_envs": 1,
|
62 |
+
"num_timesteps": 100000,
|
63 |
+
"_total_timesteps": 100000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": 0,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1671039014906110857,
|
68 |
+
"learning_rate": 0.0007,
|
69 |
+
"tensorboard_log": "runs/MountainCarContinuous-v0__a2c__4257972393__1671039012/MountainCarContinuous-v0",
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": null,
|
75 |
+
"_last_episode_starts": {
|
76 |
+
":type:": "<class 'numpy.ndarray'>",
|
77 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
78 |
+
},
|
79 |
+
"_last_original_obs": {
|
80 |
+
":type:": "<class 'numpy.ndarray'>",
|
81 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAMyOCb8AAAAAoTjZvgAAAABtcdm+AAAAAC2aDr8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwKGlIwBQ5R0lFKULg=="
|
82 |
+
},
|
83 |
+
"_episode_num": 0,
|
84 |
+
"use_sde": true,
|
85 |
+
"sde_sample_freq": 16,
|
86 |
+
"_current_progress_remaining": 0.0,
|
87 |
+
"ep_info_buffer": {
|
88 |
+
":type:": "<class 'collections.deque'>",
|
89 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFbfh0Qsf7uMAWyUS1iMAXSUR0A2gldTo+wDdX2UKGgGR0BXRmB4D9wWaAdLY2gIR0A2h70nPVurdX2UKGgGR0BWDIDs+mm+aAdLg2gIR0A2j6Ae7tiQdX2UKGgGR0BU4jyWiUPhaAdLqmgIR0A2k5eJHiFTdX2UKGgGR0BW1x6OYIBzaAdLWGgIR0A2l18b70nPdX2UKGgGR0BXZxh2GIsRaAdLSWgIR0A2mXhwVCXydX2UKGgGR0BW6SUPhAGCaAdLVWgIR0A2o/SH/LkkdX2UKGgGR0BXA/EwWWQfaAdLU2gIR0A2p4cm0E5idX2UKGgGR0BW6MXm/336aAdLV2gIR0A2rDu0CzTndX2UKGgGR0BWpmV7hNucaAdLX2gIR0A2sAksz2vjdX2UKGgGR0BXKKi9IwueaAdLTWgIR0A2vqSHM2WIdX2UKGgGR0BW6D5bhWHUaAdLVWgIR0A2xDXOGCZndX2UKGgGR0BVHrt7a7EpaAdLpWgIR0A2zZeRgZ0kdX2UKGgGR0BUZ63/giu/aAdLvGgIR0A2z336AOJ+dX2UKGgGR0BXCoPoV2zOaAdLUmgIR0A20TgVGkN4dX2UKGgGR0BW96slsxfwaAdLU2gIR0A22EDQqqffdX2UKGgGR0BXLkYCQtBfaAdLSWgIR0A24RlHz6JqdX2UKGgGR0BXaMyBTXJ6aAdLSWgIR0A24shgVoHtdX2UKGgGR0BWYIlD4QBgaAdLcWgIR0A26GJvYODrdX2UKGgGR0BW3sjqv/zbaAdLV2gIR0A27SLIgeRxdX2UKGgGR0BXcMbJfYz0aAdLS2gIR0A281VHWjGldX2UKGgGR0BW0tcB2fTTaAdLWGgIR0A2988La24NdX2UKGgGR0BW0redkJ8faAdLWGgIR0A3AQWN3np0dX2UKGgGR0BW2MXFcY65aAdLV2gIR0A3CCz1K5CodX2UKGgGR0BXE06kqMFVaAdLU2gIR0A3C9cry1/ldX2UKGgGR0BU6mDQJHAiaAdLqWgIR0A3EQFcIJJHdX2UKGgGR0BWxDxTbWVeaAdLW2gIR0A3FqKxcE/0dX2UKGgGR0BXICsCDEm6aAdLXGgIR0A3Hgf2bobGdX2UKGgGR0BXMy7K7qY7aAdLYmgIR0A3Iz3yqdYodX2UKGgGR0BW7AMpgCwKaAdLVGgIR0A3JSbYsd1ddX2UKGgGR0BWrk8mrsByaAdLXmgIR0A3LQj2SMcZdX2UKGgGR0BW5aRMewLWaAdLVmgIR0A3MpIczZYgdX2UKGgGR0BWs9KqXF98aAdLXWgIR0A3OzCUHIIXdX2UKGgGR0BWnPLxI8QqaAdLZ2gIR0A3O4MnZ00WdX2UKGgGR0BW5sd5prULaAdLXmgIR0A3Q1cMVk+YdX2UKGgGR0BXIzVMEidKaAdLW2gIR0A3RzgMtseodX2UKGgGR0BW3k/0NBnjaAdLVmgIR0A3T+/QBxPwdX2UKGgGR0BW+GTTvy9VaAdLVmgIR0A3UDfWMCLddX2UKGgGR0BW0wNwzch1aAdLWGgIR0A3WImw7kn1dX2UKGgGR0BWslBD5TIeaAdLXWgIR0A3XXgtOEdvdX2UKGgGR0BXBX3lCCz1aAdLU2gIR0A3ZEXLvCuVdX2UKGgGR0BWuSeI2wV1aAdLXGgIR0A3c3lCCz1LdX2UKGgGR0BU50Gu9vjwaAdLqmgIR0A3d6F/QSi/dX2UKGgGR0BWDw/HHWBjaAdLimgIR0A3ekt29tdidX2UKGgGR0BW3zmjj7yhaAdLX2gIR0A3evvjOs1bdX2UKGgGR0BW2fFm4AjqaAdLV2gIR0A3iFqi48U3dX2UKGgGR0BW1fOhTOxCaAdLWGgIR0A3jNfgJkXldX2UKGgGR0BWvSm2sq8UaAdLXGgIR0A3jyCFsYVJdX2UKGgGR0BWcx6F/QSjaAdLamgIR0A3lE9Mbm2cdX2UKGgGR0BW28E/0NBoaAdLV2gIR0A3oal1r6+GdX2UKGgGR0BVf3nU2DQJaAdLkWgIR0A3q11W8yvcdX2UKGgGR0BW2jByjpLVaAdLV2gIR0A3tlKbrkbQdX2UKGgGR0BVMjB2wFC+aAdLqmgIR0A3t8iOearndX2UKGgGR0BWzE6Lfk3kaAdLW2gIR0A3wSm65Gz9dX2UKGgGR0BUMjgqEvkBaAdLxGgIR0A3wp9qk/KRdX2UKGgGR0BXZsFpwjt5aAdLSWgIR0A3yUbkwN9ZdX2UKGgGR0BWyFPFefI0aAdLWmgIR0A31U+cH4XXdX2UKGgGR0BW3/3ai9IxaAdLVmgIR0A31fxc3VCpdX2UKGgGR0BXE2iDdxhlaAdLVGgIR0A33W2gFotddX2UKGgGR0BUrJsGgSOBaAdLv2gIR0A348ifQKKHdX2UKGgGR0BXYPTspoboaAdLSWgIR0A35zo2XLNfdX2UKGgGR0BW2ROk+HJtaAdLWGgIR0A36yPdVNpNdX2UKGgGR0BW0pZOi35OaAdLWGgIR0A38qVyFPBSdX2UKGgGR0BW4m+K0lZ6aAdLVmgIR0A3++u/1xsEdX2UKGgGR0BW0QpKBd2QaAdLW2gIR0A4AN1QqI8AdX2UKGgGR0BWz2WD6FdtaAdLWWgIR0A4B/mknCwbdX2UKGgGR0BW2Ks+3YthaAdLV2gIR0A4EMjNY8uBdX2UKGgGR0BWxgwPAfuDaAdLXWgIR0A4F0ojOcDsdX2UKGgGR0BUWFzySV4YaAdL5mgIR0A4GlchTwUhdX2UKGgGR0BXEUPpY9xIaAdLWGgIR0A4G+lCTlkpdX2UKGgGR0BWx9A5aNdaaAdLWmgIR0A4Jm/336AOdX2UKGgGR0BW22jwhGH6aAdLV2gIR0A4L07KaG5+dX2UKGgGR0BWbNg0CRwIaAdLcmgIR0A4MkFOfukUdX2UKGgGR0BWaXCsOoYOaAdLfGgIR0A4OpFTefqYdX2UKGgGR0BW5ZOerdWRaAdLVmgIR0A4OyjYZl4DdX2UKGgGR0BW8xIBikO7aAdLVGgIR0A4Q3TNMXabdX2UKGgGR0BXA9d7fHghaAdLUWgIR0A4TS9/SYw7dX2UKGgGR0BW672L5ylvaAdLVmgIR0A4TbzK9wm3dX2UKGgGR0BVPW3BpHqeaAdLn2gIR0A4WHWz4UN8dX2UKGgGR0BW7jHbRF7VaAdLVGgIR0A4YdM0xdpqdX2UKGgGR0BWw3RLK3d9aAdLXGgIR0A4YyEL6UJOdX2UKGgGR0BVPH6l+EytaAdLmWgIR0A4aCU5dWyUdX2UKGgGR0BXa8dxQzk7aAdLRGgIR0A4aOyE+PildX2UKGgGR0BWyVVDKHO9aAdLWmgIR0A4d0bLlmvodX2UKGgGR0BW4SemNzbOaAdLXGgIR0A4eSrYGt6pdX2UKGgGR0BWxAb6xgRcaAdLcmgIR0A4gyAQQL/kdX2UKGgGR0BVbJ9ZzPrwaAdLlGgIR0A4i4VRDTjOdX2UKGgGR0BW1KJVKf4AaAdLWWgIR0A4jJqIrOJMdX2UKGgGR0BW5ZxvNu+AaAdLVWgIR0A4jYw7DEWJdX2UKGgGR0BW9HizcAR1aAdLWGgIR0A4mEOAiFCcdX2UKGgGR0BXZXjhky1vaAdLSmgIR0A4n1L8JlasdX2UKGgGR0BW5Wsmv4dqaAdLVmgIR0A4oCojv/ipdX2UKGgGR0BXGWcnVoYfaAdLXmgIR0A4oyBkI5YHdX2UKGgGR0BW7ES7GvOhaAdLVGgIR0A4qxoIv8IidX2UKGgGR0BW86wMYuTSaAdLVGgIR0A4tF3IMjNZdX2UKGgGR0BW79R3u/lAaAdLVWgIR0A4t50r9VFQdX2UKGgGR0BW70xyn1nNaAdLVGgIR0A4v1Gsmv4edX2UKGgGR0BWzkIHC4z8aAdLWmgIR0A4yeEZiuuBdX2UKGgGR0BWySgGr0aqaAdLWmgIR0A4zRLbpNbkdX2UKGgGR0BW729g4OtoaAdLVGgIR0A405WRzRx+dWUu"
|
90 |
+
},
|
91 |
+
"ep_success_buffer": {
|
92 |
+
":type:": "<class 'collections.deque'>",
|
93 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
94 |
+
},
|
95 |
+
"_n_updates": 250,
|
96 |
+
"n_steps": 100,
|
97 |
+
"gamma": 0.99,
|
98 |
+
"gae_lambda": 1.0,
|
99 |
+
"ent_coef": 0.0,
|
100 |
+
"vf_coef": 0.5,
|
101 |
+
"max_grad_norm": 0.5,
|
102 |
+
"normalize_advantage": false
|
103 |
+
}
|
a2c-MountainCarContinuous-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c42741a8120449ecfe5db07eba290a2a173fa0a3d37e1003d655e863ac50c1f
|
3 |
+
size 39294
|
a2c-MountainCarContinuous-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3cb58de81ecaf15343b03c03bfd84333f5dd0ece4958807ba37270c0014b3257
|
3 |
+
size 39998
|
a2c-MountainCarContinuous-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-MountainCarContinuous-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.9.12
|
3 |
+
- Stable-Baselines3: 1.8.0a6
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
args.yml
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- a2c
|
4 |
+
- - device
|
5 |
+
- auto
|
6 |
+
- - env
|
7 |
+
- MountainCarContinuous-v0
|
8 |
+
- - env_kwargs
|
9 |
+
- null
|
10 |
+
- - eval_episodes
|
11 |
+
- 5
|
12 |
+
- - eval_freq
|
13 |
+
- 25000
|
14 |
+
- - gym_packages
|
15 |
+
- []
|
16 |
+
- - hyperparams
|
17 |
+
- null
|
18 |
+
- - log_folder
|
19 |
+
- logs
|
20 |
+
- - log_interval
|
21 |
+
- -1
|
22 |
+
- - max_total_trials
|
23 |
+
- null
|
24 |
+
- - n_eval_envs
|
25 |
+
- 1
|
26 |
+
- - n_evaluations
|
27 |
+
- null
|
28 |
+
- - n_jobs
|
29 |
+
- 1
|
30 |
+
- - n_startup_trials
|
31 |
+
- 10
|
32 |
+
- - n_timesteps
|
33 |
+
- -1
|
34 |
+
- - n_trials
|
35 |
+
- 500
|
36 |
+
- - no_optim_plots
|
37 |
+
- false
|
38 |
+
- - num_threads
|
39 |
+
- -1
|
40 |
+
- - optimization_log_path
|
41 |
+
- null
|
42 |
+
- - optimize_hyperparameters
|
43 |
+
- false
|
44 |
+
- - progress
|
45 |
+
- false
|
46 |
+
- - pruner
|
47 |
+
- median
|
48 |
+
- - sampler
|
49 |
+
- tpe
|
50 |
+
- - save_freq
|
51 |
+
- -1
|
52 |
+
- - save_replay_buffer
|
53 |
+
- false
|
54 |
+
- - seed
|
55 |
+
- 4257972393
|
56 |
+
- - storage
|
57 |
+
- null
|
58 |
+
- - study_name
|
59 |
+
- null
|
60 |
+
- - tensorboard_log
|
61 |
+
- runs/MountainCarContinuous-v0__a2c__4257972393__1671039012
|
62 |
+
- - track
|
63 |
+
- true
|
64 |
+
- - trained_agent
|
65 |
+
- ''
|
66 |
+
- - truncate_last_trajectory
|
67 |
+
- true
|
68 |
+
- - uuid
|
69 |
+
- false
|
70 |
+
- - vec_env
|
71 |
+
- dummy
|
72 |
+
- - verbose
|
73 |
+
- 1
|
74 |
+
- - wandb_entity
|
75 |
+
- openrlbenchmark
|
76 |
+
- - wandb_project_name
|
77 |
+
- sb3
|
78 |
+
- - yaml_file
|
79 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - ent_coef
|
3 |
+
- 0.0
|
4 |
+
- - n_envs
|
5 |
+
- 4
|
6 |
+
- - n_steps
|
7 |
+
- 100
|
8 |
+
- - n_timesteps
|
9 |
+
- 100000.0
|
10 |
+
- - normalize
|
11 |
+
- true
|
12 |
+
- - policy
|
13 |
+
- MlpPolicy
|
14 |
+
- - policy_kwargs
|
15 |
+
- dict(log_std_init=0.0, ortho_init=False)
|
16 |
+
- - sde_sample_freq
|
17 |
+
- 16
|
18 |
+
- - use_sde
|
19 |
+
- true
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a28f0d4862e34cc0710a65a1d8881056e52243065f4fe31d5f87030eef7b98c1
|
3 |
+
size 258043
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 91.57973689999999, "std_reward": 0.09576784549362244, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T14:53:31.983153"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0c93fdce3a478cbddbfed214e152fc96002f3343f6228fe634c31241345ed38
|
3 |
+
size 23057
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6de5b71c98eeb27253659e6038d2239f408b8dc13078c7d982ce7c4917f2bc38
|
3 |
+
size 4059
|