File size: 248,413 Bytes
6dbab35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 |
[2023-03-02 18:27:42,253][1037367] Saving configuration to /home/qgallouedec/train_dir/default_experiment/config.json... [2023-03-02 18:27:42,253][1037367] Rollout worker 0 uses device cpu [2023-03-02 18:27:42,253][1037367] Rollout worker 1 uses device cpu [2023-03-02 18:27:42,253][1037367] Rollout worker 2 uses device cpu [2023-03-02 18:27:42,253][1037367] Rollout worker 3 uses device cpu [2023-03-02 18:27:42,254][1037367] Rollout worker 4 uses device cpu [2023-03-02 18:27:42,254][1037367] Rollout worker 5 uses device cpu [2023-03-02 18:27:42,254][1037367] Rollout worker 6 uses device cpu [2023-03-02 18:27:42,254][1037367] Rollout worker 7 uses device cpu [2023-03-02 18:27:42,254][1037367] Rollout worker 8 uses device cpu [2023-03-02 18:27:42,254][1037367] Rollout worker 9 uses device cpu [2023-03-02 18:27:42,254][1037367] Rollout worker 10 uses device cpu [2023-03-02 18:27:42,254][1037367] Rollout worker 11 uses device cpu [2023-03-02 18:27:42,254][1037367] Rollout worker 12 uses device cpu [2023-03-02 18:27:42,254][1037367] Rollout worker 13 uses device cpu [2023-03-02 18:27:42,254][1037367] Rollout worker 14 uses device cpu [2023-03-02 18:27:42,254][1037367] Rollout worker 15 uses device cpu [2023-03-02 18:27:42,254][1037367] Rollout worker 16 uses device cpu [2023-03-02 18:27:42,254][1037367] Rollout worker 17 uses device cpu [2023-03-02 18:27:42,254][1037367] Rollout worker 18 uses device cpu [2023-03-02 18:27:42,255][1037367] Rollout worker 19 uses device cpu [2023-03-02 18:27:42,255][1037367] Rollout worker 20 uses device cpu [2023-03-02 18:27:42,255][1037367] Rollout worker 21 uses device cpu [2023-03-02 18:27:42,255][1037367] Rollout worker 22 uses device cpu [2023-03-02 18:27:42,255][1037367] Rollout worker 23 uses device cpu [2023-03-02 18:27:42,255][1037367] Rollout worker 24 uses device cpu [2023-03-02 18:27:42,255][1037367] Rollout worker 25 uses device cpu [2023-03-02 18:27:42,255][1037367] Rollout worker 26 uses device cpu [2023-03-02 18:27:42,255][1037367] Rollout worker 27 uses device cpu [2023-03-02 18:27:42,255][1037367] Rollout worker 28 uses device cpu [2023-03-02 18:27:42,255][1037367] Rollout worker 29 uses device cpu [2023-03-02 18:27:42,255][1037367] Rollout worker 30 uses device cpu [2023-03-02 18:27:42,255][1037367] Rollout worker 31 uses device cpu [2023-03-02 18:27:42,270][1037367] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-02 18:27:42,270][1037367] InferenceWorker_p0-w0: min num requests: 10 [2023-03-02 18:27:42,335][1037367] Starting all processes... [2023-03-02 18:27:42,335][1037367] Starting process learner_proc0 [2023-03-02 18:27:42,385][1037367] Starting all processes... [2023-03-02 18:27:42,434][1037367] Starting process inference_proc0-0 [2023-03-02 18:27:42,434][1037367] Starting process rollout_proc0 [2023-03-02 18:27:42,434][1037367] Starting process rollout_proc1 [2023-03-02 18:27:42,434][1037367] Starting process rollout_proc2 [2023-03-02 18:27:42,435][1037367] Starting process rollout_proc3 [2023-03-02 18:27:42,435][1037367] Starting process rollout_proc4 [2023-03-02 18:27:42,437][1037367] Starting process rollout_proc5 [2023-03-02 18:27:42,438][1037367] Starting process rollout_proc6 [2023-03-02 18:27:42,438][1037367] Starting process rollout_proc7 [2023-03-02 18:27:42,438][1037367] Starting process rollout_proc8 [2023-03-02 18:27:42,449][1037367] Starting process rollout_proc9 [2023-03-02 18:27:42,451][1037367] Starting process rollout_proc10 [2023-03-02 18:27:42,452][1037367] Starting process rollout_proc11 [2023-03-02 18:27:42,452][1037367] Starting process rollout_proc12 [2023-03-02 18:27:42,452][1037367] Starting process rollout_proc13 [2023-03-02 18:27:42,457][1037367] Starting process rollout_proc14 [2023-03-02 18:27:42,459][1037367] Starting process rollout_proc15 [2023-03-02 18:27:42,460][1037367] Starting process rollout_proc16 [2023-03-02 18:27:42,561][1037367] Starting process rollout_proc31 [2023-03-02 18:27:42,464][1037367] Starting process rollout_proc18 [2023-03-02 18:27:42,470][1037367] Starting process rollout_proc19 [2023-03-02 18:27:42,475][1037367] Starting process rollout_proc20 [2023-03-02 18:27:42,483][1037367] Starting process rollout_proc21 [2023-03-02 18:27:42,486][1037367] Starting process rollout_proc22 [2023-03-02 18:27:42,502][1037367] Starting process rollout_proc24 [2023-03-02 18:27:42,509][1037367] Starting process rollout_proc25 [2023-03-02 18:27:42,496][1037367] Starting process rollout_proc23 [2023-03-02 18:27:42,517][1037367] Starting process rollout_proc26 [2023-03-02 18:27:42,526][1037367] Starting process rollout_proc27 [2023-03-02 18:27:42,544][1037367] Starting process rollout_proc29 [2023-03-02 18:27:42,535][1037367] Starting process rollout_proc28 [2023-03-02 18:27:42,552][1037367] Starting process rollout_proc30 [2023-03-02 18:27:42,463][1037367] Starting process rollout_proc17 [2023-03-02 18:27:44,359][1037628] Worker 3 uses CPU cores [3] [2023-03-02 18:27:44,419][1037626] Worker 1 uses CPU cores [1] [2023-03-02 18:27:44,515][1037794] Worker 14 uses CPU cores [14] [2023-03-02 18:27:44,674][1037630] Worker 5 uses CPU cores [5] [2023-03-02 18:27:44,678][1037934] Worker 28 uses CPU cores [28] [2023-03-02 18:27:44,854][1037790] Worker 10 uses CPU cores [10] [2023-03-02 18:27:44,990][1037830] Worker 21 uses CPU cores [21] [2023-03-02 18:27:45,050][1037901] Worker 29 uses CPU cores [29] [2023-03-02 18:27:45,278][1037793] Worker 13 uses CPU cores [13] [2023-03-02 18:27:45,342][1037798] Worker 18 uses CPU cores [18] [2023-03-02 18:27:45,506][1037896] Worker 22 uses CPU cores [22] [2023-03-02 18:27:45,654][1037863] Worker 31 uses CPU cores [31] [2023-03-02 18:27:45,666][1037795] Worker 15 uses CPU cores [15] [2023-03-02 18:27:45,822][1037573] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-02 18:27:45,822][1037573] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0 [2023-03-02 18:27:45,833][1037573] Num visible devices: 1 [2023-03-02 18:27:45,867][1037573] WARNING! It is generally recommended to enable Fixed KL loss (https://arxiv.org/pdf/1707.06347.pdf) for continuous action tasks to avoid potential numerical issues. I.e. set --kl_loss_coeff=0.1 [2023-03-02 18:27:45,867][1037573] Starting seed is not provided [2023-03-02 18:27:45,867][1037573] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-02 18:27:45,868][1037573] Initializing actor-critic model on device cuda:0 [2023-03-02 18:27:45,868][1037573] RunningMeanStd input shape: (39,) [2023-03-02 18:27:45,868][1037573] RunningMeanStd input shape: (1,) [2023-03-02 18:27:45,870][1037935] Worker 17 uses CPU cores [17] [2023-03-02 18:27:45,911][1037625] Worker 0 uses CPU cores [0] [2023-03-02 18:27:45,999][1037573] Created Actor Critic model with architecture: [2023-03-02 18:27:45,999][1037573] ActorCriticSharedWeights( (obs_normalizer): ObservationNormalizer( (running_mean_std): RunningMeanStdDictInPlace( (running_mean_std): ModuleDict( (obs): RunningMeanStdInPlace() ) ) ) (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace) (encoder): MultiInputEncoder( (encoders): ModuleDict( (obs): MlpEncoder( (mlp_head): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Linear) (1): RecursiveScriptModule(original_name=ELU) (2): RecursiveScriptModule(original_name=Linear) (3): RecursiveScriptModule(original_name=ELU) ) ) ) ) (core): ModelCoreRNN( (core): GRU(512, 512) ) (decoder): MlpDecoder( (mlp): Identity() ) (critic_linear): Linear(in_features=512, out_features=1, bias=True) (action_parameterization): ActionParameterizationDefault( (distribution_linear): Linear(in_features=512, out_features=8, bias=True) ) ) [2023-03-02 18:27:46,049][1037713] Worker 8 uses CPU cores [8] [2023-03-02 18:27:46,106][1037792] Worker 12 uses CPU cores [12] [2023-03-02 18:27:46,230][1037797] Worker 19 uses CPU cores [19] [2023-03-02 18:27:46,467][1037631] Worker 6 uses CPU cores [6] [2023-03-02 18:27:46,486][1037791] Worker 11 uses CPU cores [11] [2023-03-02 18:27:46,583][1037899] Worker 26 uses CPU cores [26] [2023-03-02 18:27:46,851][1037624] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-02 18:27:46,851][1037624] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0 [2023-03-02 18:27:46,875][1037624] Num visible devices: 1 [2023-03-02 18:27:46,965][1037862] Worker 20 uses CPU cores [20] [2023-03-02 18:27:46,968][1037900] Worker 27 uses CPU cores [27] [2023-03-02 18:27:47,098][1037796] Worker 16 uses CPU cores [16] [2023-03-02 18:27:47,176][1037864] Worker 24 uses CPU cores [24] [2023-03-02 18:27:47,250][1037897] Worker 25 uses CPU cores [25] [2023-03-02 18:27:47,288][1037898] Worker 23 uses CPU cores [23] [2023-03-02 18:27:47,467][1037573] Using optimizer <class 'torch.optim.adam.Adam'> [2023-03-02 18:27:47,467][1037573] No checkpoints found [2023-03-02 18:27:47,467][1037573] Did not load from checkpoint, starting from scratch! [2023-03-02 18:27:47,467][1037573] Initialized policy 0 weights for model version 0 [2023-03-02 18:27:47,469][1037573] LearnerWorker_p0 finished initialization! [2023-03-02 18:27:47,469][1037573] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-02 18:27:47,490][1037933] Worker 30 uses CPU cores [30] [2023-03-02 18:27:47,505][1037694] Worker 9 uses CPU cores [9] [2023-03-02 18:27:47,526][1037624] RunningMeanStd input shape: (39,) [2023-03-02 18:27:47,527][1037624] RunningMeanStd input shape: (1,) [2023-03-02 18:27:47,639][1037627] Worker 2 uses CPU cores [2] [2023-03-02 18:27:47,693][1037629] Worker 4 uses CPU cores [4] [2023-03-02 18:27:47,747][1037758] Worker 7 uses CPU cores [7] [2023-03-02 18:27:48,148][1037367] Inference worker 0-0 is ready! [2023-03-02 18:27:48,149][1037367] All inference workers are ready! Signal rollout workers to start! [2023-03-02 18:27:49,284][1037367] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-03-02 18:27:49,695][1037933] EvtLoop [rollout_proc30_evt_loop, process=rollout_proc30] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,697][1037933] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc30_evt_loop [2023-03-02 18:27:49,748][1037758] EvtLoop [rollout_proc7_evt_loop, process=rollout_proc7] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,750][1037758] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc7_evt_loop [2023-03-02 18:27:49,750][1037934] EvtLoop [rollout_proc28_evt_loop, process=rollout_proc28] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,752][1037934] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc28_evt_loop [2023-03-02 18:27:49,759][1037901] EvtLoop [rollout_proc29_evt_loop, process=rollout_proc29] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,761][1037901] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc29_evt_loop [2023-03-02 18:27:49,770][1037625] EvtLoop [rollout_proc0_evt_loop, process=rollout_proc0] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,772][1037625] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc0_evt_loop [2023-03-02 18:27:49,787][1037797] EvtLoop [rollout_proc19_evt_loop, process=rollout_proc19] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,789][1037797] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc19_evt_loop [2023-03-02 18:27:49,813][1037627] EvtLoop [rollout_proc2_evt_loop, process=rollout_proc2] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,815][1037627] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc2_evt_loop [2023-03-02 18:27:49,815][1037899] EvtLoop [rollout_proc26_evt_loop, process=rollout_proc26] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,817][1037899] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc26_evt_loop [2023-03-02 18:27:49,817][1037629] EvtLoop [rollout_proc4_evt_loop, process=rollout_proc4] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,817][1037900] EvtLoop [rollout_proc27_evt_loop, process=rollout_proc27] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,817][1037862] EvtLoop [rollout_proc20_evt_loop, process=rollout_proc20] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,818][1037629] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc4_evt_loop [2023-03-02 18:27:49,818][1037900] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc27_evt_loop [2023-03-02 18:27:49,818][1037862] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc20_evt_loop [2023-03-02 18:27:49,840][1037796] EvtLoop [rollout_proc16_evt_loop, process=rollout_proc16] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,841][1037796] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc16_evt_loop [2023-03-02 18:27:49,843][1037897] EvtLoop [rollout_proc25_evt_loop, process=rollout_proc25] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,845][1037897] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc25_evt_loop [2023-03-02 18:27:49,845][1037626] EvtLoop [rollout_proc1_evt_loop, process=rollout_proc1] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,846][1037626] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc1_evt_loop [2023-03-02 18:27:49,847][1037935] EvtLoop [rollout_proc17_evt_loop, process=rollout_proc17] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,849][1037935] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc17_evt_loop [2023-03-02 18:27:49,850][1037863] EvtLoop [rollout_proc31_evt_loop, process=rollout_proc31] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,850][1037795] EvtLoop [rollout_proc15_evt_loop, process=rollout_proc15] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,852][1037863] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc31_evt_loop [2023-03-02 18:27:49,852][1037795] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc15_evt_loop [2023-03-02 18:27:49,859][1037798] EvtLoop [rollout_proc18_evt_loop, process=rollout_proc18] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,860][1037798] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc18_evt_loop [2023-03-02 18:27:49,860][1037791] EvtLoop [rollout_proc11_evt_loop, process=rollout_proc11] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,862][1037791] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc11_evt_loop [2023-03-02 18:27:49,934][1037631] EvtLoop [rollout_proc6_evt_loop, process=rollout_proc6] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,936][1037631] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc6_evt_loop [2023-03-02 18:27:49,944][1037630] EvtLoop [rollout_proc5_evt_loop, process=rollout_proc5] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,948][1037630] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc5_evt_loop [2023-03-02 18:27:49,950][1037694] EvtLoop [rollout_proc9_evt_loop, process=rollout_proc9] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,952][1037694] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc9_evt_loop [2023-03-02 18:27:49,963][1037830] EvtLoop [rollout_proc21_evt_loop, process=rollout_proc21] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,964][1037830] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc21_evt_loop [2023-03-02 18:27:49,968][1037864] EvtLoop [rollout_proc24_evt_loop, process=rollout_proc24] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,970][1037864] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc24_evt_loop [2023-03-02 18:27:49,977][1037713] EvtLoop [rollout_proc8_evt_loop, process=rollout_proc8] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,981][1037713] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc8_evt_loop [2023-03-02 18:27:49,981][1037896] EvtLoop [rollout_proc22_evt_loop, process=rollout_proc22] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:49,983][1037896] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc22_evt_loop [2023-03-02 18:27:50,031][1037628] EvtLoop [rollout_proc3_evt_loop, process=rollout_proc3] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:50,032][1037628] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc3_evt_loop [2023-03-02 18:27:50,058][1037790] EvtLoop [rollout_proc10_evt_loop, process=rollout_proc10] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:50,059][1037790] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc10_evt_loop [2023-03-02 18:27:50,069][1037898] EvtLoop [rollout_proc23_evt_loop, process=rollout_proc23] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:50,070][1037898] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc23_evt_loop [2023-03-02 18:27:50,070][1037792] EvtLoop [rollout_proc12_evt_loop, process=rollout_proc12] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:50,072][1037792] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc12_evt_loop [2023-03-02 18:27:50,115][1037793] EvtLoop [rollout_proc13_evt_loop, process=rollout_proc13] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:50,117][1037793] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc13_evt_loop [2023-03-02 18:27:50,513][1037794] EvtLoop [rollout_proc14_evt_loop, process=rollout_proc14] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/time_limit.py", line 68, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/order_enforcing.py", line 42, in reset return self.env.reset(**kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/wrappers/env_checker.py", line 45, in reset return env_reset_passive_checker(self.env, **kwargs) File "/home/qgallouedec/env_sample_factory/lib/python3.9/site-packages/gym/utils/passive_env_checker.py", line 192, in env_reset_passive_checker result = env.reset(**kwargs) TypeError: reset() got an unexpected keyword argument 'seed' [2023-03-02 18:27:50,519][1037794] Unhandled exception reset() got an unexpected keyword argument 'seed' in evt loop rollout_proc14_evt_loop [2023-03-02 18:27:54,284][1037367] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-03-02 18:27:59,284][1037367] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-03-02 18:28:02,265][1037367] Heartbeat connected on Batcher_0 [2023-03-02 18:28:02,267][1037367] Heartbeat connected on LearnerWorker_p0 [2023-03-02 18:28:02,313][1037367] Heartbeat connected on InferenceWorker_p0-w0 [2023-03-02 18:28:04,284][1037367] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-03-02 18:28:09,284][1037367] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-03-02 18:28:14,284][1037367] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-03-02 18:28:19,284][1037367] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-03-02 18:28:24,284][1037367] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-03-02 18:28:29,284][1037367] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-03-02 18:28:34,284][1037367] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-03-02 18:28:39,284][1037367] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-03-02 18:28:44,284][1037367] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-03-02 18:28:49,284][1037367] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-03-02 18:28:53,935][1037367] Keyboard interrupt detected in the event loop EvtLoop [Runner_EvtLoop, process=main process 1037367], exiting... [2023-03-02 18:28:53,936][1037367] Runner profile tree view: main_loop: 71.6008 [2023-03-02 18:28:53,936][1037367] Collected {0: 0}, FPS: 0.0 [2023-03-02 18:28:53,936][1037573] Stopping Batcher_0... [2023-03-02 18:28:53,936][1037573] Loop batcher_evt_loop terminating... [2023-03-02 18:28:53,937][1037573] Saving /home/qgallouedec/train_dir/default_experiment/checkpoint_p0/checkpoint_000000000_0.pth... [2023-03-02 18:28:53,972][1037573] Stopping LearnerWorker_p0... [2023-03-02 18:28:53,972][1037573] Loop learner_proc0_evt_loop terminating... [2023-03-02 18:28:53,990][1037624] Weights refcount: 2 0 [2023-03-02 18:28:53,991][1037624] Stopping InferenceWorker_p0-w0... [2023-03-02 18:28:53,991][1037624] Loop inference_proc0-0_evt_loop terminating... [2023-03-02 18:29:12,579][1041156] Saving configuration to /home/qgallouedec/train_dir/default_experiment/config.json... [2023-03-02 18:29:12,580][1041156] Rollout worker 0 uses device cpu [2023-03-02 18:29:12,580][1041156] Rollout worker 1 uses device cpu [2023-03-02 18:29:12,580][1041156] Rollout worker 2 uses device cpu [2023-03-02 18:29:12,580][1041156] Rollout worker 3 uses device cpu [2023-03-02 18:29:12,580][1041156] Rollout worker 4 uses device cpu [2023-03-02 18:29:12,580][1041156] Rollout worker 5 uses device cpu [2023-03-02 18:29:12,580][1041156] Rollout worker 6 uses device cpu [2023-03-02 18:29:12,580][1041156] Rollout worker 7 uses device cpu [2023-03-02 18:29:12,580][1041156] Rollout worker 8 uses device cpu [2023-03-02 18:29:12,580][1041156] Rollout worker 9 uses device cpu [2023-03-02 18:29:12,580][1041156] Rollout worker 10 uses device cpu [2023-03-02 18:29:12,580][1041156] Rollout worker 11 uses device cpu [2023-03-02 18:29:12,580][1041156] Rollout worker 12 uses device cpu [2023-03-02 18:29:12,580][1041156] Rollout worker 13 uses device cpu [2023-03-02 18:29:12,581][1041156] Rollout worker 14 uses device cpu [2023-03-02 18:29:12,581][1041156] Rollout worker 15 uses device cpu [2023-03-02 18:29:12,581][1041156] Rollout worker 16 uses device cpu [2023-03-02 18:29:12,581][1041156] Rollout worker 17 uses device cpu [2023-03-02 18:29:12,581][1041156] Rollout worker 18 uses device cpu [2023-03-02 18:29:12,581][1041156] Rollout worker 19 uses device cpu [2023-03-02 18:29:12,581][1041156] Rollout worker 20 uses device cpu [2023-03-02 18:29:12,581][1041156] Rollout worker 21 uses device cpu [2023-03-02 18:29:12,581][1041156] Rollout worker 22 uses device cpu [2023-03-02 18:29:12,581][1041156] Rollout worker 23 uses device cpu [2023-03-02 18:29:12,581][1041156] Rollout worker 24 uses device cpu [2023-03-02 18:29:12,581][1041156] Rollout worker 25 uses device cpu [2023-03-02 18:29:12,581][1041156] Rollout worker 26 uses device cpu [2023-03-02 18:29:12,581][1041156] Rollout worker 27 uses device cpu [2023-03-02 18:29:12,581][1041156] Rollout worker 28 uses device cpu [2023-03-02 18:29:12,582][1041156] Rollout worker 29 uses device cpu [2023-03-02 18:29:12,582][1041156] Rollout worker 30 uses device cpu [2023-03-02 18:29:12,582][1041156] Rollout worker 31 uses device cpu [2023-03-02 18:29:12,596][1041156] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-02 18:29:12,596][1041156] InferenceWorker_p0-w0: min num requests: 10 [2023-03-02 18:29:12,662][1041156] Starting all processes... [2023-03-02 18:29:12,662][1041156] Starting process learner_proc0 [2023-03-02 18:29:12,712][1041156] Starting all processes... [2023-03-02 18:29:12,721][1041156] Starting process inference_proc0-0 [2023-03-02 18:29:12,722][1041156] Starting process rollout_proc0 [2023-03-02 18:29:12,722][1041156] Starting process rollout_proc1 [2023-03-02 18:29:12,722][1041156] Starting process rollout_proc2 [2023-03-02 18:29:12,722][1041156] Starting process rollout_proc3 [2023-03-02 18:29:12,722][1041156] Starting process rollout_proc4 [2023-03-02 18:29:12,722][1041156] Starting process rollout_proc5 [2023-03-02 18:29:12,722][1041156] Starting process rollout_proc6 [2023-03-02 18:29:12,722][1041156] Starting process rollout_proc7 [2023-03-02 18:29:12,722][1041156] Starting process rollout_proc8 [2023-03-02 18:29:12,722][1041156] Starting process rollout_proc9 [2023-03-02 18:29:12,722][1041156] Starting process rollout_proc10 [2023-03-02 18:29:12,722][1041156] Starting process rollout_proc11 [2023-03-02 18:29:12,722][1041156] Starting process rollout_proc12 [2023-03-02 18:29:12,722][1041156] Starting process rollout_proc13 [2023-03-02 18:29:12,722][1041156] Starting process rollout_proc14 [2023-03-02 18:29:12,737][1041156] Starting process rollout_proc16 [2023-03-02 18:29:12,730][1041156] Starting process rollout_proc15 [2023-03-02 18:29:12,744][1041156] Starting process rollout_proc17 [2023-03-02 18:29:12,761][1041156] Starting process rollout_proc18 [2023-03-02 18:29:12,781][1041156] Starting process rollout_proc19 [2023-03-02 18:29:12,784][1041156] Starting process rollout_proc20 [2023-03-02 18:29:12,789][1041156] Starting process rollout_proc21 [2023-03-02 18:29:12,797][1041156] Starting process rollout_proc22 [2023-03-02 18:29:12,803][1041156] Starting process rollout_proc23 [2023-03-02 18:29:12,825][1041156] Starting process rollout_proc24 [2023-03-02 18:29:12,840][1041156] Starting process rollout_proc25 [2023-03-02 18:29:12,851][1041156] Starting process rollout_proc26 [2023-03-02 18:29:12,858][1041156] Starting process rollout_proc27 [2023-03-02 18:29:12,859][1041156] Starting process rollout_proc28 [2023-03-02 18:29:12,860][1041156] Starting process rollout_proc29 [2023-03-02 18:29:12,862][1041156] Starting process rollout_proc30 [2023-03-02 18:29:12,957][1041156] Starting process rollout_proc31 [2023-03-02 18:29:14,702][1041406] Worker 5 uses CPU cores [5] [2023-03-02 18:29:14,825][1041399] Worker 0 uses CPU cores [0] [2023-03-02 18:29:14,869][1041633] Worker 18 uses CPU cores [18] [2023-03-02 18:29:15,038][1041568] Worker 13 uses CPU cores [13] [2023-03-02 18:29:15,126][1041768] Worker 29 uses CPU cores [29] [2023-03-02 18:29:15,162][1041634] Worker 19 uses CPU cores [19] [2023-03-02 18:29:15,386][1041400] Worker 1 uses CPU cores [1] [2023-03-02 18:29:15,463][1041803] Worker 25 uses CPU cores [25] [2023-03-02 18:29:15,554][1041403] Worker 6 uses CPU cores [6] [2023-03-02 18:29:15,612][1041735] Worker 28 uses CPU cores [28] [2023-03-02 18:29:15,641][1041771] Worker 24 uses CPU cores [24] [2023-03-02 18:29:15,915][1041699] Worker 22 uses CPU cores [22] [2023-03-02 18:29:15,972][1041470] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-02 18:29:15,972][1041470] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0 [2023-03-02 18:29:15,982][1041470] Num visible devices: 1 [2023-03-02 18:29:16,066][1041769] Worker 30 uses CPU cores [30] [2023-03-02 18:29:16,283][1041507] Worker 4 uses CPU cores [4] [2023-03-02 18:29:16,338][1041601] Worker 15 uses CPU cores [15] [2023-03-02 18:29:16,476][1041701] Worker 23 uses CPU cores [23] [2023-03-02 18:29:16,546][1041698] Worker 14 uses CPU cores [14] [2023-03-02 18:29:16,641][1041402] Worker 3 uses CPU cores [3] [2023-03-02 18:29:16,735][1041703] Worker 27 uses CPU cores [27] [2023-03-02 18:29:16,922][1041566] Worker 11 uses CPU cores [11] [2023-03-02 18:29:17,072][1041348] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-02 18:29:17,072][1041348] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0 [2023-03-02 18:29:17,082][1041348] Num visible devices: 1 [2023-03-02 18:29:17,088][1041404] Worker 8 uses CPU cores [8] [2023-03-02 18:29:17,111][1041348] WARNING! It is generally recommended to enable Fixed KL loss (https://arxiv.org/pdf/1707.06347.pdf) for continuous action tasks to avoid potential numerical issues. I.e. set --kl_loss_coeff=0.1 [2023-03-02 18:29:17,111][1041348] Starting seed is not provided [2023-03-02 18:29:17,111][1041348] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-02 18:29:17,111][1041348] Initializing actor-critic model on device cuda:0 [2023-03-02 18:29:17,112][1041348] RunningMeanStd input shape: (39,) [2023-03-02 18:29:17,112][1041348] RunningMeanStd input shape: (1,) [2023-03-02 18:29:17,206][1041348] Created Actor Critic model with architecture: [2023-03-02 18:29:17,206][1041348] ActorCriticSharedWeights( (obs_normalizer): ObservationNormalizer( (running_mean_std): RunningMeanStdDictInPlace( (running_mean_std): ModuleDict( (obs): RunningMeanStdInPlace() ) ) ) (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace) (encoder): MultiInputEncoder( (encoders): ModuleDict( (obs): MlpEncoder( (mlp_head): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Linear) (1): RecursiveScriptModule(original_name=ELU) (2): RecursiveScriptModule(original_name=Linear) (3): RecursiveScriptModule(original_name=ELU) ) ) ) ) (core): ModelCoreRNN( (core): GRU(512, 512) ) (decoder): MlpDecoder( (mlp): Identity() ) (critic_linear): Linear(in_features=512, out_features=1, bias=True) (action_parameterization): ActionParameterizationDefault( (distribution_linear): Linear(in_features=512, out_features=8, bias=True) ) ) [2023-03-02 18:29:17,280][1041539] Worker 12 uses CPU cores [12] [2023-03-02 18:29:17,350][1041405] Worker 7 uses CPU cores [7] [2023-03-02 18:29:17,527][1041702] Worker 20 uses CPU cores [20] [2023-03-02 18:29:17,556][1041767] Worker 26 uses CPU cores [26] [2023-03-02 18:29:17,626][1041600] Worker 16 uses CPU cores [16] [2023-03-02 18:29:17,738][1041567] Worker 9 uses CPU cores [9] [2023-03-02 18:29:17,891][1041697] Worker 17 uses CPU cores [17] [2023-03-02 18:29:18,018][1041401] Worker 2 uses CPU cores [2] [2023-03-02 18:29:18,126][1041770] Worker 31 uses CPU cores [31] [2023-03-02 18:29:18,297][1041407] Worker 10 uses CPU cores [10] [2023-03-02 18:29:18,337][1041700] Worker 21 uses CPU cores [21] [2023-03-02 18:29:18,445][1041348] Using optimizer <class 'torch.optim.adam.Adam'> [2023-03-02 18:29:18,446][1041348] Loading state from checkpoint /home/qgallouedec/train_dir/default_experiment/checkpoint_p0/checkpoint_000000000_0.pth... [2023-03-02 18:29:18,450][1041348] Loading model from checkpoint [2023-03-02 18:29:18,451][1041348] Loaded experiment state at self.train_step=0, self.env_steps=0 [2023-03-02 18:29:18,451][1041348] Initialized policy 0 weights for model version 0 [2023-03-02 18:29:18,453][1041348] LearnerWorker_p0 finished initialization! [2023-03-02 18:29:18,453][1041348] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-02 18:29:18,524][1041470] RunningMeanStd input shape: (39,) [2023-03-02 18:29:18,525][1041470] RunningMeanStd input shape: (1,) [2023-03-02 18:29:19,153][1041156] Inference worker 0-0 is ready! [2023-03-02 18:29:19,153][1041156] All inference workers are ready! Signal rollout workers to start! [2023-03-02 18:29:19,652][1041156] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-03-02 18:29:20,736][1041698] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,754][1041770] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,772][1041701] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,797][1041404] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,802][1041697] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,805][1041699] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,839][1041768] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,856][1041735] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,859][1041702] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,868][1041767] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,876][1041400] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,877][1041771] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,885][1041700] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,886][1041406] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,889][1041566] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,889][1041703] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,892][1041803] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,908][1041399] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,909][1041401] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,911][1041633] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,931][1041634] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,944][1041407] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,947][1041568] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,964][1041402] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,973][1041405] Decorrelating experience for 0 frames... [2023-03-02 18:29:20,998][1041567] Decorrelating experience for 0 frames... [2023-03-02 18:29:21,001][1041769] Decorrelating experience for 0 frames... [2023-03-02 18:29:21,007][1041507] Decorrelating experience for 0 frames... [2023-03-02 18:29:21,011][1041539] Decorrelating experience for 0 frames... [2023-03-02 18:29:21,106][1041600] Decorrelating experience for 0 frames... [2023-03-02 18:29:21,115][1041403] Decorrelating experience for 0 frames... [2023-03-02 18:29:21,226][1041601] Decorrelating experience for 0 frames... [2023-03-02 18:29:22,292][1041770] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,309][1041698] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,349][1041701] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,396][1041768] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,405][1041404] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,405][1041735] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,413][1041697] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,436][1041399] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,448][1041400] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,472][1041634] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,478][1041767] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,496][1041700] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,499][1041803] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,503][1041406] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,517][1041566] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,517][1041407] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,517][1041703] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,543][1041568] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,545][1041567] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,547][1041771] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,551][1041401] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,552][1041633] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,568][1041539] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,574][1041405] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,581][1041699] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,584][1041702] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,584][1041507] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,660][1041769] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,688][1041403] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,717][1041402] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,768][1041600] Decorrelating experience for 32 frames... [2023-03-02 18:29:22,835][1041601] Decorrelating experience for 32 frames... [2023-03-02 18:29:23,020][1041348] Signal inference workers to stop experience collection... [2023-03-02 18:29:23,023][1041470] InferenceWorker_p0-w0: stopping experience collection [2023-03-02 18:29:23,374][1041348] Signal inference workers to resume experience collection... [2023-03-02 18:29:23,374][1041470] InferenceWorker_p0-w0: resuming experience collection [2023-03-02 18:29:24,581][1041470] Updated weights for policy 0, policy_version 10 (0.0212) [2023-03-02 18:29:24,652][1041156] Fps is (10 sec: 2252.9, 60 sec: 2252.9, 300 sec: 2252.9). Total num frames: 11264. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0) [2023-03-02 18:29:25,407][1041470] Updated weights for policy 0, policy_version 20 (0.0007) [2023-03-02 18:29:26,248][1041470] Updated weights for policy 0, policy_version 30 (0.0007) [2023-03-02 18:29:27,088][1041470] Updated weights for policy 0, policy_version 40 (0.0007) [2023-03-02 18:29:27,920][1041470] Updated weights for policy 0, policy_version 50 (0.0007) [2023-03-02 18:29:28,750][1041470] Updated weights for policy 0, policy_version 60 (0.0007) [2023-03-02 18:29:29,585][1041470] Updated weights for policy 0, policy_version 70 (0.0006) [2023-03-02 18:29:29,652][1041156] Fps is (10 sec: 7168.1, 60 sec: 7168.1, 300 sec: 7168.1). Total num frames: 71680. Throughput: 0: 5557.1. Samples: 55570. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:29:29,652][1041156] Avg episode reward: [(0, '6.776')] [2023-03-02 18:29:30,399][1041470] Updated weights for policy 0, policy_version 80 (0.0006) [2023-03-02 18:29:31,229][1041470] Updated weights for policy 0, policy_version 90 (0.0006) [2023-03-02 18:29:32,072][1041470] Updated weights for policy 0, policy_version 100 (0.0006) [2023-03-02 18:29:32,591][1041156] Heartbeat connected on Batcher_0 [2023-03-02 18:29:32,594][1041156] Heartbeat connected on LearnerWorker_p0 [2023-03-02 18:29:32,599][1041156] Heartbeat connected on RolloutWorker_w0 [2023-03-02 18:29:32,600][1041156] Heartbeat connected on InferenceWorker_p0-w0 [2023-03-02 18:29:32,601][1041156] Heartbeat connected on RolloutWorker_w1 [2023-03-02 18:29:32,604][1041156] Heartbeat connected on RolloutWorker_w2 [2023-03-02 18:29:32,605][1041156] Heartbeat connected on RolloutWorker_w3 [2023-03-02 18:29:32,608][1041156] Heartbeat connected on RolloutWorker_w4 [2023-03-02 18:29:32,611][1041156] Heartbeat connected on RolloutWorker_w6 [2023-03-02 18:29:32,614][1041156] Heartbeat connected on RolloutWorker_w7 [2023-03-02 18:29:32,616][1041156] Heartbeat connected on RolloutWorker_w8 [2023-03-02 18:29:32,619][1041156] Heartbeat connected on RolloutWorker_w10 [2023-03-02 18:29:32,620][1041156] Heartbeat connected on RolloutWorker_w9 [2023-03-02 18:29:32,620][1041156] Heartbeat connected on RolloutWorker_w5 [2023-03-02 18:29:32,622][1041156] Heartbeat connected on RolloutWorker_w11 [2023-03-02 18:29:32,623][1041156] Heartbeat connected on RolloutWorker_w12 [2023-03-02 18:29:32,626][1041156] Heartbeat connected on RolloutWorker_w13 [2023-03-02 18:29:32,628][1041156] Heartbeat connected on RolloutWorker_w14 [2023-03-02 18:29:32,629][1041156] Heartbeat connected on RolloutWorker_w15 [2023-03-02 18:29:32,631][1041156] Heartbeat connected on RolloutWorker_w16 [2023-03-02 18:29:32,634][1041156] Heartbeat connected on RolloutWorker_w17 [2023-03-02 18:29:32,635][1041156] Heartbeat connected on RolloutWorker_w18 [2023-03-02 18:29:32,637][1041156] Heartbeat connected on RolloutWorker_w19 [2023-03-02 18:29:32,639][1041156] Heartbeat connected on RolloutWorker_w20 [2023-03-02 18:29:32,641][1041156] Heartbeat connected on RolloutWorker_w21 [2023-03-02 18:29:32,645][1041156] Heartbeat connected on RolloutWorker_w22 [2023-03-02 18:29:32,645][1041156] Heartbeat connected on RolloutWorker_w23 [2023-03-02 18:29:32,649][1041156] Heartbeat connected on RolloutWorker_w24 [2023-03-02 18:29:32,649][1041156] Heartbeat connected on RolloutWorker_w25 [2023-03-02 18:29:32,651][1041156] Heartbeat connected on RolloutWorker_w26 [2023-03-02 18:29:32,654][1041156] Heartbeat connected on RolloutWorker_w27 [2023-03-02 18:29:32,655][1041156] Heartbeat connected on RolloutWorker_w28 [2023-03-02 18:29:32,658][1041156] Heartbeat connected on RolloutWorker_w29 [2023-03-02 18:29:32,660][1041156] Heartbeat connected on RolloutWorker_w30 [2023-03-02 18:29:32,663][1041156] Heartbeat connected on RolloutWorker_w31 [2023-03-02 18:29:32,889][1041470] Updated weights for policy 0, policy_version 110 (0.0006) [2023-03-02 18:29:33,723][1041470] Updated weights for policy 0, policy_version 120 (0.0007) [2023-03-02 18:29:34,567][1041470] Updated weights for policy 0, policy_version 130 (0.0006) [2023-03-02 18:29:34,652][1041156] Fps is (10 sec: 12185.5, 60 sec: 8874.8, 300 sec: 8874.8). Total num frames: 133120. Throughput: 0: 8620.8. Samples: 129310. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:29:34,652][1041156] Avg episode reward: [(0, '11.346')] [2023-03-02 18:29:34,659][1041348] Saving new best policy, reward=11.346! [2023-03-02 18:29:35,365][1041470] Updated weights for policy 0, policy_version 140 (0.0006) [2023-03-02 18:29:36,204][1041470] Updated weights for policy 0, policy_version 150 (0.0006) [2023-03-02 18:29:37,057][1041470] Updated weights for policy 0, policy_version 160 (0.0006) [2023-03-02 18:29:37,884][1041470] Updated weights for policy 0, policy_version 170 (0.0006) [2023-03-02 18:29:38,687][1041470] Updated weights for policy 0, policy_version 180 (0.0006) [2023-03-02 18:29:39,521][1041470] Updated weights for policy 0, policy_version 190 (0.0006) [2023-03-02 18:29:39,652][1041156] Fps is (10 sec: 12390.4, 60 sec: 9779.3, 300 sec: 9779.3). Total num frames: 195584. Throughput: 0: 8317.0. Samples: 166339. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:29:39,652][1041156] Avg episode reward: [(0, '16.348')] [2023-03-02 18:29:39,655][1041348] Saving new best policy, reward=16.348! [2023-03-02 18:29:40,340][1041470] Updated weights for policy 0, policy_version 200 (0.0006) [2023-03-02 18:29:41,144][1041470] Updated weights for policy 0, policy_version 210 (0.0007) [2023-03-02 18:29:41,968][1041470] Updated weights for policy 0, policy_version 220 (0.0006) [2023-03-02 18:29:42,777][1041470] Updated weights for policy 0, policy_version 230 (0.0006) [2023-03-02 18:29:43,619][1041470] Updated weights for policy 0, policy_version 240 (0.0008) [2023-03-02 18:29:44,440][1041470] Updated weights for policy 0, policy_version 250 (0.0007) [2023-03-02 18:29:44,652][1041156] Fps is (10 sec: 12492.9, 60 sec: 10322.0, 300 sec: 10322.0). Total num frames: 258048. Throughput: 0: 9655.9. Samples: 241394. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:29:44,652][1041156] Avg episode reward: [(0, '18.740')] [2023-03-02 18:29:44,652][1041348] Saving new best policy, reward=18.740! [2023-03-02 18:29:45,246][1041470] Updated weights for policy 0, policy_version 260 (0.0007) [2023-03-02 18:29:46,072][1041470] Updated weights for policy 0, policy_version 270 (0.0006) [2023-03-02 18:29:46,915][1041470] Updated weights for policy 0, policy_version 280 (0.0007) [2023-03-02 18:29:47,729][1041470] Updated weights for policy 0, policy_version 290 (0.0007) [2023-03-02 18:29:48,542][1041470] Updated weights for policy 0, policy_version 300 (0.0007) [2023-03-02 18:29:49,366][1041470] Updated weights for policy 0, policy_version 310 (0.0006) [2023-03-02 18:29:49,652][1041156] Fps is (10 sec: 12492.9, 60 sec: 10683.8, 300 sec: 10683.8). Total num frames: 320512. Throughput: 0: 10536.5. Samples: 316092. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:29:49,652][1041156] Avg episode reward: [(0, '19.417')] [2023-03-02 18:29:49,655][1041348] Saving new best policy, reward=19.417! [2023-03-02 18:29:50,178][1041470] Updated weights for policy 0, policy_version 320 (0.0007) [2023-03-02 18:29:51,011][1041470] Updated weights for policy 0, policy_version 330 (0.0007) [2023-03-02 18:29:51,839][1041470] Updated weights for policy 0, policy_version 340 (0.0006) [2023-03-02 18:29:52,654][1041470] Updated weights for policy 0, policy_version 350 (0.0007) [2023-03-02 18:29:53,478][1041470] Updated weights for policy 0, policy_version 360 (0.0006) [2023-03-02 18:29:54,287][1041470] Updated weights for policy 0, policy_version 370 (0.0007) [2023-03-02 18:29:54,652][1041156] Fps is (10 sec: 12492.7, 60 sec: 10942.2, 300 sec: 10942.2). Total num frames: 382976. Throughput: 0: 10100.3. Samples: 353507. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:29:54,652][1041156] Avg episode reward: [(0, '18.078')] [2023-03-02 18:29:55,119][1041470] Updated weights for policy 0, policy_version 380 (0.0007) [2023-03-02 18:29:55,918][1041470] Updated weights for policy 0, policy_version 390 (0.0006) [2023-03-02 18:29:56,746][1041470] Updated weights for policy 0, policy_version 400 (0.0006) [2023-03-02 18:29:57,563][1041470] Updated weights for policy 0, policy_version 410 (0.0006) [2023-03-02 18:29:58,388][1041470] Updated weights for policy 0, policy_version 420 (0.0007) [2023-03-02 18:29:59,208][1041470] Updated weights for policy 0, policy_version 430 (0.0007) [2023-03-02 18:29:59,652][1041156] Fps is (10 sec: 12492.7, 60 sec: 11136.1, 300 sec: 11136.1). Total num frames: 445440. Throughput: 0: 10714.5. Samples: 428578. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:29:59,652][1041156] Avg episode reward: [(0, '22.284')] [2023-03-02 18:29:59,655][1041348] Saving new best policy, reward=22.284! [2023-03-02 18:30:00,044][1041470] Updated weights for policy 0, policy_version 440 (0.0007) [2023-03-02 18:30:00,863][1041470] Updated weights for policy 0, policy_version 450 (0.0006) [2023-03-02 18:30:01,702][1041470] Updated weights for policy 0, policy_version 460 (0.0006) [2023-03-02 18:30:02,551][1041470] Updated weights for policy 0, policy_version 470 (0.0007) [2023-03-02 18:30:03,377][1041470] Updated weights for policy 0, policy_version 480 (0.0006) [2023-03-02 18:30:04,199][1041470] Updated weights for policy 0, policy_version 490 (0.0006) [2023-03-02 18:30:04,652][1041156] Fps is (10 sec: 12390.4, 60 sec: 11264.1, 300 sec: 11264.1). Total num frames: 506880. Throughput: 0: 11169.5. Samples: 502623. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:30:04,652][1041156] Avg episode reward: [(0, '27.631')] [2023-03-02 18:30:04,652][1041348] Saving new best policy, reward=27.631! [2023-03-02 18:30:05,041][1041470] Updated weights for policy 0, policy_version 500 (0.0006) [2023-03-02 18:30:05,889][1041470] Updated weights for policy 0, policy_version 510 (0.0006) [2023-03-02 18:30:06,704][1041470] Updated weights for policy 0, policy_version 520 (0.0007) [2023-03-02 18:30:07,530][1041470] Updated weights for policy 0, policy_version 530 (0.0006) [2023-03-02 18:30:08,365][1041470] Updated weights for policy 0, policy_version 540 (0.0006) [2023-03-02 18:30:09,185][1041470] Updated weights for policy 0, policy_version 550 (0.0007) [2023-03-02 18:30:09,652][1041156] Fps is (10 sec: 12288.0, 60 sec: 11366.4, 300 sec: 11366.4). Total num frames: 568320. Throughput: 0: 11991.2. Samples: 539602. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:30:09,652][1041156] Avg episode reward: [(0, '24.110')] [2023-03-02 18:30:10,027][1041470] Updated weights for policy 0, policy_version 560 (0.0006) [2023-03-02 18:30:10,846][1041470] Updated weights for policy 0, policy_version 570 (0.0007) [2023-03-02 18:30:11,651][1041470] Updated weights for policy 0, policy_version 580 (0.0006) [2023-03-02 18:30:12,473][1041470] Updated weights for policy 0, policy_version 590 (0.0007) [2023-03-02 18:30:13,310][1041470] Updated weights for policy 0, policy_version 600 (0.0007) [2023-03-02 18:30:14,132][1041470] Updated weights for policy 0, policy_version 610 (0.0007) [2023-03-02 18:30:14,651][1041156] Fps is (10 sec: 12390.5, 60 sec: 11468.9, 300 sec: 11468.9). Total num frames: 630784. Throughput: 0: 12406.1. Samples: 613845. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0) [2023-03-02 18:30:14,652][1041156] Avg episode reward: [(0, '24.942')] [2023-03-02 18:30:14,952][1041470] Updated weights for policy 0, policy_version 620 (0.0007) [2023-03-02 18:30:15,790][1041470] Updated weights for policy 0, policy_version 630 (0.0006) [2023-03-02 18:30:16,623][1041470] Updated weights for policy 0, policy_version 640 (0.0007) [2023-03-02 18:30:17,458][1041470] Updated weights for policy 0, policy_version 650 (0.0006) [2023-03-02 18:30:18,309][1041470] Updated weights for policy 0, policy_version 660 (0.0006) [2023-03-02 18:30:19,150][1041470] Updated weights for policy 0, policy_version 670 (0.0007) [2023-03-02 18:30:19,652][1041156] Fps is (10 sec: 12390.4, 60 sec: 11537.1, 300 sec: 11537.1). Total num frames: 692224. Throughput: 0: 12405.8. Samples: 687572. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:30:19,652][1041156] Avg episode reward: [(0, '37.811')] [2023-03-02 18:30:19,665][1041348] Saving new best policy, reward=37.811! [2023-03-02 18:30:19,982][1041470] Updated weights for policy 0, policy_version 680 (0.0006) [2023-03-02 18:30:20,839][1041470] Updated weights for policy 0, policy_version 690 (0.0006) [2023-03-02 18:30:21,655][1041470] Updated weights for policy 0, policy_version 700 (0.0006) [2023-03-02 18:30:22,476][1041470] Updated weights for policy 0, policy_version 710 (0.0007) [2023-03-02 18:30:23,313][1041470] Updated weights for policy 0, policy_version 720 (0.0007) [2023-03-02 18:30:24,144][1041470] Updated weights for policy 0, policy_version 730 (0.0006) [2023-03-02 18:30:24,652][1041156] Fps is (10 sec: 12288.0, 60 sec: 12373.3, 300 sec: 11594.9). Total num frames: 753664. Throughput: 0: 12399.4. Samples: 724313. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:30:24,652][1041156] Avg episode reward: [(0, '28.162')] [2023-03-02 18:30:24,981][1041470] Updated weights for policy 0, policy_version 740 (0.0006) [2023-03-02 18:30:25,823][1041470] Updated weights for policy 0, policy_version 750 (0.0006) [2023-03-02 18:30:26,656][1041470] Updated weights for policy 0, policy_version 760 (0.0006) [2023-03-02 18:30:27,483][1041470] Updated weights for policy 0, policy_version 770 (0.0007) [2023-03-02 18:30:28,316][1041470] Updated weights for policy 0, policy_version 780 (0.0006) [2023-03-02 18:30:29,160][1041470] Updated weights for policy 0, policy_version 790 (0.0006) [2023-03-02 18:30:29,651][1041156] Fps is (10 sec: 12288.1, 60 sec: 12390.4, 300 sec: 11644.4). Total num frames: 815104. Throughput: 0: 12371.6. Samples: 798116. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:30:29,652][1041156] Avg episode reward: [(0, '23.295')] [2023-03-02 18:30:29,981][1041470] Updated weights for policy 0, policy_version 800 (0.0007) [2023-03-02 18:30:30,813][1041470] Updated weights for policy 0, policy_version 810 (0.0007) [2023-03-02 18:30:31,625][1041470] Updated weights for policy 0, policy_version 820 (0.0006) [2023-03-02 18:30:32,443][1041470] Updated weights for policy 0, policy_version 830 (0.0007) [2023-03-02 18:30:33,254][1041470] Updated weights for policy 0, policy_version 840 (0.0006) [2023-03-02 18:30:34,091][1041470] Updated weights for policy 0, policy_version 850 (0.0007) [2023-03-02 18:30:34,652][1041156] Fps is (10 sec: 12288.0, 60 sec: 12390.4, 300 sec: 11687.3). Total num frames: 876544. Throughput: 0: 12364.9. Samples: 872511. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:30:34,652][1041156] Avg episode reward: [(0, '30.840')] [2023-03-02 18:30:34,929][1041470] Updated weights for policy 0, policy_version 860 (0.0007) [2023-03-02 18:30:35,799][1041470] Updated weights for policy 0, policy_version 870 (0.0007) [2023-03-02 18:30:36,649][1041470] Updated weights for policy 0, policy_version 880 (0.0007) [2023-03-02 18:30:37,472][1041470] Updated weights for policy 0, policy_version 890 (0.0007) [2023-03-02 18:30:38,305][1041470] Updated weights for policy 0, policy_version 900 (0.0007) [2023-03-02 18:30:39,149][1041470] Updated weights for policy 0, policy_version 910 (0.0006) [2023-03-02 18:30:39,652][1041156] Fps is (10 sec: 12185.4, 60 sec: 12356.3, 300 sec: 11712.0). Total num frames: 936960. Throughput: 0: 12335.0. Samples: 908583. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:30:39,652][1041156] Avg episode reward: [(0, '30.760')] [2023-03-02 18:30:40,006][1041470] Updated weights for policy 0, policy_version 920 (0.0006) [2023-03-02 18:30:40,832][1041470] Updated weights for policy 0, policy_version 930 (0.0007) [2023-03-02 18:30:41,688][1041470] Updated weights for policy 0, policy_version 940 (0.0007) [2023-03-02 18:30:42,501][1041470] Updated weights for policy 0, policy_version 950 (0.0006) [2023-03-02 18:30:43,308][1041470] Updated weights for policy 0, policy_version 960 (0.0006) [2023-03-02 18:30:44,155][1041470] Updated weights for policy 0, policy_version 970 (0.0006) [2023-03-02 18:30:44,651][1041156] Fps is (10 sec: 12185.7, 60 sec: 12339.2, 300 sec: 11745.9). Total num frames: 998400. Throughput: 0: 12304.6. Samples: 982283. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:30:44,652][1041156] Avg episode reward: [(0, '31.192')] [2023-03-02 18:30:44,989][1041470] Updated weights for policy 0, policy_version 980 (0.0006) [2023-03-02 18:30:45,832][1041470] Updated weights for policy 0, policy_version 990 (0.0007) [2023-03-02 18:30:46,653][1041470] Updated weights for policy 0, policy_version 1000 (0.0006) [2023-03-02 18:30:47,506][1041470] Updated weights for policy 0, policy_version 1010 (0.0006) [2023-03-02 18:30:48,330][1041470] Updated weights for policy 0, policy_version 1020 (0.0006) [2023-03-02 18:30:49,144][1041470] Updated weights for policy 0, policy_version 1030 (0.0006) [2023-03-02 18:30:49,651][1041156] Fps is (10 sec: 12390.5, 60 sec: 12339.2, 300 sec: 11787.4). Total num frames: 1060864. Throughput: 0: 12299.3. Samples: 1056092. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:30:49,652][1041156] Avg episode reward: [(0, '32.916')] [2023-03-02 18:30:49,982][1041470] Updated weights for policy 0, policy_version 1040 (0.0007) [2023-03-02 18:30:50,805][1041470] Updated weights for policy 0, policy_version 1050 (0.0007) [2023-03-02 18:30:51,623][1041470] Updated weights for policy 0, policy_version 1060 (0.0007) [2023-03-02 18:30:52,416][1041470] Updated weights for policy 0, policy_version 1070 (0.0006) [2023-03-02 18:30:53,226][1041470] Updated weights for policy 0, policy_version 1080 (0.0007) [2023-03-02 18:30:54,085][1041470] Updated weights for policy 0, policy_version 1090 (0.0006) [2023-03-02 18:30:54,652][1041156] Fps is (10 sec: 12492.7, 60 sec: 12339.2, 300 sec: 11824.5). Total num frames: 1123328. Throughput: 0: 12313.9. Samples: 1093727. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:30:54,652][1041156] Avg episode reward: [(0, '26.459')] [2023-03-02 18:30:54,915][1041470] Updated weights for policy 0, policy_version 1100 (0.0006) [2023-03-02 18:30:55,754][1041470] Updated weights for policy 0, policy_version 1110 (0.0006) [2023-03-02 18:30:56,594][1041470] Updated weights for policy 0, policy_version 1120 (0.0006) [2023-03-02 18:30:57,420][1041470] Updated weights for policy 0, policy_version 1130 (0.0006) [2023-03-02 18:30:58,248][1041470] Updated weights for policy 0, policy_version 1140 (0.0006) [2023-03-02 18:30:59,071][1041470] Updated weights for policy 0, policy_version 1150 (0.0006) [2023-03-02 18:30:59,652][1041156] Fps is (10 sec: 12287.8, 60 sec: 12305.1, 300 sec: 11837.5). Total num frames: 1183744. Throughput: 0: 12308.1. Samples: 1167709. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:30:59,652][1041156] Avg episode reward: [(0, '22.995')] [2023-03-02 18:30:59,915][1041470] Updated weights for policy 0, policy_version 1160 (0.0007) [2023-03-02 18:31:00,748][1041470] Updated weights for policy 0, policy_version 1170 (0.0007) [2023-03-02 18:31:01,582][1041470] Updated weights for policy 0, policy_version 1180 (0.0007) [2023-03-02 18:31:02,407][1041470] Updated weights for policy 0, policy_version 1190 (0.0006) [2023-03-02 18:31:03,250][1041470] Updated weights for policy 0, policy_version 1200 (0.0006) [2023-03-02 18:31:04,068][1041470] Updated weights for policy 0, policy_version 1210 (0.0007) [2023-03-02 18:31:04,652][1041156] Fps is (10 sec: 12288.0, 60 sec: 12322.1, 300 sec: 11868.7). Total num frames: 1246208. Throughput: 0: 12304.7. Samples: 1241284. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0) [2023-03-02 18:31:04,652][1041156] Avg episode reward: [(0, '33.392')] [2023-03-02 18:31:04,915][1041470] Updated weights for policy 0, policy_version 1220 (0.0007) [2023-03-02 18:31:05,723][1041470] Updated weights for policy 0, policy_version 1230 (0.0007) [2023-03-02 18:31:06,555][1041470] Updated weights for policy 0, policy_version 1240 (0.0007) [2023-03-02 18:31:07,368][1041470] Updated weights for policy 0, policy_version 1250 (0.0006) [2023-03-02 18:31:08,187][1041470] Updated weights for policy 0, policy_version 1260 (0.0006) [2023-03-02 18:31:09,017][1041470] Updated weights for policy 0, policy_version 1270 (0.0007) [2023-03-02 18:31:09,651][1041156] Fps is (10 sec: 12390.5, 60 sec: 12322.2, 300 sec: 11887.7). Total num frames: 1307648. Throughput: 0: 12311.8. Samples: 1278344. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0) [2023-03-02 18:31:09,652][1041156] Avg episode reward: [(0, '24.287')] [2023-03-02 18:31:09,655][1041348] Saving /home/qgallouedec/train_dir/default_experiment/checkpoint_p0/checkpoint_000001277_1307648.pth... [2023-03-02 18:31:09,849][1041470] Updated weights for policy 0, policy_version 1280 (0.0006) [2023-03-02 18:31:10,685][1041470] Updated weights for policy 0, policy_version 1290 (0.0007) [2023-03-02 18:31:11,545][1041470] Updated weights for policy 0, policy_version 1300 (0.0006) [2023-03-02 18:31:12,373][1041470] Updated weights for policy 0, policy_version 1310 (0.0007) [2023-03-02 18:31:13,204][1041470] Updated weights for policy 0, policy_version 1320 (0.0006) [2023-03-02 18:31:14,045][1041470] Updated weights for policy 0, policy_version 1330 (0.0006) [2023-03-02 18:31:14,652][1041156] Fps is (10 sec: 12288.0, 60 sec: 12305.1, 300 sec: 11905.1). Total num frames: 1369088. Throughput: 0: 12316.8. Samples: 1352372. Policy #0 lag: (min: 0.0, avg: 1.4, max: 3.0) [2023-03-02 18:31:14,652][1041156] Avg episode reward: [(0, '24.567')] [2023-03-02 18:31:14,859][1041470] Updated weights for policy 0, policy_version 1340 (0.0007) [2023-03-02 18:31:15,707][1041470] Updated weights for policy 0, policy_version 1350 (0.0007) [2023-03-02 18:31:16,536][1041470] Updated weights for policy 0, policy_version 1360 (0.0006) [2023-03-02 18:31:17,360][1041470] Updated weights for policy 0, policy_version 1370 (0.0006) [2023-03-02 18:31:18,188][1041470] Updated weights for policy 0, policy_version 1380 (0.0006) [2023-03-02 18:31:19,038][1041470] Updated weights for policy 0, policy_version 1390 (0.0006) [2023-03-02 18:31:19,652][1041156] Fps is (10 sec: 12287.9, 60 sec: 12305.1, 300 sec: 11921.1). Total num frames: 1430528. Throughput: 0: 12305.1. Samples: 1426239. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:31:19,652][1041156] Avg episode reward: [(0, '25.044')] [2023-03-02 18:31:19,866][1041470] Updated weights for policy 0, policy_version 1400 (0.0007) [2023-03-02 18:31:20,697][1041470] Updated weights for policy 0, policy_version 1410 (0.0008) [2023-03-02 18:31:21,521][1041470] Updated weights for policy 0, policy_version 1420 (0.0007) [2023-03-02 18:31:22,390][1041470] Updated weights for policy 0, policy_version 1430 (0.0005) [2023-03-02 18:31:23,203][1041470] Updated weights for policy 0, policy_version 1440 (0.0007) [2023-03-02 18:31:24,057][1041470] Updated weights for policy 0, policy_version 1450 (0.0008) [2023-03-02 18:31:24,652][1041156] Fps is (10 sec: 12288.0, 60 sec: 12305.1, 300 sec: 11935.8). Total num frames: 1491968. Throughput: 0: 12325.3. Samples: 1463221. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:31:24,652][1041156] Avg episode reward: [(0, '21.030')] [2023-03-02 18:31:24,893][1041470] Updated weights for policy 0, policy_version 1460 (0.0009) [2023-03-02 18:31:25,683][1041470] Updated weights for policy 0, policy_version 1470 (0.0006) [2023-03-02 18:31:26,536][1041470] Updated weights for policy 0, policy_version 1480 (0.0007) [2023-03-02 18:31:27,348][1041470] Updated weights for policy 0, policy_version 1490 (0.0006) [2023-03-02 18:31:28,161][1041470] Updated weights for policy 0, policy_version 1500 (0.0006) [2023-03-02 18:31:28,973][1041470] Updated weights for policy 0, policy_version 1510 (0.0007) [2023-03-02 18:31:29,652][1041156] Fps is (10 sec: 12288.0, 60 sec: 12305.0, 300 sec: 11949.3). Total num frames: 1553408. Throughput: 0: 12330.8. Samples: 1537168. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:31:29,652][1041156] Avg episode reward: [(0, '22.561')] [2023-03-02 18:31:29,837][1041470] Updated weights for policy 0, policy_version 1520 (0.0007) [2023-03-02 18:31:30,669][1041470] Updated weights for policy 0, policy_version 1530 (0.0006) [2023-03-02 18:31:31,512][1041470] Updated weights for policy 0, policy_version 1540 (0.0006) [2023-03-02 18:31:32,334][1041470] Updated weights for policy 0, policy_version 1550 (0.0006) [2023-03-02 18:31:33,192][1041470] Updated weights for policy 0, policy_version 1560 (0.0006) [2023-03-02 18:31:34,016][1041470] Updated weights for policy 0, policy_version 1570 (0.0007) [2023-03-02 18:31:34,652][1041156] Fps is (10 sec: 12288.0, 60 sec: 12305.1, 300 sec: 11961.9). Total num frames: 1614848. Throughput: 0: 12320.2. Samples: 1610504. Policy #0 lag: (min: 0.0, avg: 1.0, max: 3.0) [2023-03-02 18:31:34,652][1041156] Avg episode reward: [(0, '29.190')] [2023-03-02 18:31:34,880][1041470] Updated weights for policy 0, policy_version 1580 (0.0006) [2023-03-02 18:31:35,724][1041470] Updated weights for policy 0, policy_version 1590 (0.0006) [2023-03-02 18:31:36,452][1041156] Keyboard interrupt detected in the event loop EvtLoop [Runner_EvtLoop, process=main process 1041156], exiting... [2023-03-02 18:31:36,452][1041700] Stopping RolloutWorker_w21... [2023-03-02 18:31:36,452][1041567] Stopping RolloutWorker_w9... [2023-03-02 18:31:36,452][1041404] Stopping RolloutWorker_w8... [2023-03-02 18:31:36,452][1041703] Stopping RolloutWorker_w27... [2023-03-02 18:31:36,452][1041601] Stopping RolloutWorker_w15... [2023-03-02 18:31:36,453][1041404] Loop rollout_proc8_evt_loop terminating... [2023-03-02 18:31:36,452][1041702] Stopping RolloutWorker_w20... [2023-03-02 18:31:36,452][1041568] Stopping RolloutWorker_w13... [2023-03-02 18:31:36,452][1041401] Stopping RolloutWorker_w2... [2023-03-02 18:31:36,452][1041402] Stopping RolloutWorker_w3... [2023-03-02 18:31:36,452][1041405] Stopping RolloutWorker_w7... [2023-03-02 18:31:36,452][1041700] Loop rollout_proc21_evt_loop terminating... [2023-03-02 18:31:36,452][1041156] Runner profile tree view: main_loop: 143.7902 [2023-03-02 18:31:36,453][1041567] Loop rollout_proc9_evt_loop terminating... [2023-03-02 18:31:36,452][1041803] Stopping RolloutWorker_w25... [2023-03-02 18:31:36,453][1041703] Loop rollout_proc27_evt_loop terminating... [2023-03-02 18:31:36,452][1041539] Stopping RolloutWorker_w12... [2023-03-02 18:31:36,452][1041403] Stopping RolloutWorker_w6... [2023-03-02 18:31:36,452][1041769] Stopping RolloutWorker_w30... [2023-03-02 18:31:36,452][1041767] Stopping RolloutWorker_w26... [2023-03-02 18:31:36,452][1041633] Stopping RolloutWorker_w18... [2023-03-02 18:31:36,452][1041771] Stopping RolloutWorker_w24... [2023-03-02 18:31:36,452][1041400] Stopping RolloutWorker_w1... [2023-03-02 18:31:36,453][1041735] Stopping RolloutWorker_w28... [2023-03-02 18:31:36,452][1041566] Stopping RolloutWorker_w11... [2023-03-02 18:31:36,453][1041702] Loop rollout_proc20_evt_loop terminating... [2023-03-02 18:31:36,453][1041405] Loop rollout_proc7_evt_loop terminating... [2023-03-02 18:31:36,453][1041601] Loop rollout_proc15_evt_loop terminating... [2023-03-02 18:31:36,453][1041568] Loop rollout_proc13_evt_loop terminating... [2023-03-02 18:31:36,452][1041768] Stopping RolloutWorker_w29... [2023-03-02 18:31:36,452][1041770] Stopping RolloutWorker_w31... [2023-03-02 18:31:36,453][1041399] Stopping RolloutWorker_w0... [2023-03-02 18:31:36,453][1041156] Collected {0: 1636352}, FPS: 11380.1 [2023-03-02 18:31:36,452][1041701] Stopping RolloutWorker_w23... [2023-03-02 18:31:36,453][1041402] Loop rollout_proc3_evt_loop terminating... [2023-03-02 18:31:36,453][1041401] Loop rollout_proc2_evt_loop terminating... [2023-03-02 18:31:36,453][1041407] Stopping RolloutWorker_w10... [2023-03-02 18:31:36,453][1041403] Loop rollout_proc6_evt_loop terminating... [2023-03-02 18:31:36,453][1041507] Stopping RolloutWorker_w4... [2023-03-02 18:31:36,453][1041400] Loop rollout_proc1_evt_loop terminating... [2023-03-02 18:31:36,453][1041735] Loop rollout_proc28_evt_loop terminating... [2023-03-02 18:31:36,453][1041769] Loop rollout_proc30_evt_loop terminating... [2023-03-02 18:31:36,453][1041633] Loop rollout_proc18_evt_loop terminating... [2023-03-02 18:31:36,453][1041699] Stopping RolloutWorker_w22... [2023-03-02 18:31:36,453][1041539] Loop rollout_proc12_evt_loop terminating... [2023-03-02 18:31:36,453][1041768] Loop rollout_proc29_evt_loop terminating... [2023-03-02 18:31:36,453][1041803] Loop rollout_proc25_evt_loop terminating... [2023-03-02 18:31:36,453][1041399] Loop rollout_proc0_evt_loop terminating... [2023-03-02 18:31:36,453][1041771] Loop rollout_proc24_evt_loop terminating... [2023-03-02 18:31:36,453][1041770] Loop rollout_proc31_evt_loop terminating... [2023-03-02 18:31:36,453][1041566] Loop rollout_proc11_evt_loop terminating... [2023-03-02 18:31:36,453][1041701] Loop rollout_proc23_evt_loop terminating... [2023-03-02 18:31:36,453][1041407] Loop rollout_proc10_evt_loop terminating... [2023-03-02 18:31:36,453][1041507] Loop rollout_proc4_evt_loop terminating... [2023-03-02 18:31:36,453][1041767] Loop rollout_proc26_evt_loop terminating... [2023-03-02 18:31:36,453][1041699] Loop rollout_proc22_evt_loop terminating... [2023-03-02 18:31:36,453][1041634] Stopping RolloutWorker_w19... [2023-03-02 18:31:36,454][1041634] Loop rollout_proc19_evt_loop terminating... [2023-03-02 18:31:36,456][1041600] Stopping RolloutWorker_w16... [2023-03-02 18:31:36,457][1041600] Loop rollout_proc16_evt_loop terminating... [2023-03-02 18:31:36,457][1041348] Stopping Batcher_0... [2023-03-02 18:31:36,458][1041348] Loop batcher_evt_loop terminating... [2023-03-02 18:31:36,459][1041697] Stopping RolloutWorker_w17... [2023-03-02 18:31:36,460][1041697] Loop rollout_proc17_evt_loop terminating... [2023-03-02 18:31:36,462][1041698] Stopping RolloutWorker_w14... [2023-03-02 18:31:36,463][1041698] Loop rollout_proc14_evt_loop terminating... [2023-03-02 18:31:36,473][1041406] Stopping RolloutWorker_w5... [2023-03-02 18:31:36,474][1041406] Loop rollout_proc5_evt_loop terminating... [2023-03-02 18:31:36,483][1041348] Saving /home/qgallouedec/train_dir/default_experiment/checkpoint_p0/checkpoint_000001599_1637376.pth... [2023-03-02 18:31:36,516][1041470] Weights refcount: 2 0 [2023-03-02 18:31:36,524][1041470] Stopping InferenceWorker_p0-w0... [2023-03-02 18:31:36,525][1041470] Loop inference_proc0-0_evt_loop terminating... [2023-03-02 18:31:36,599][1041348] Removing /home/qgallouedec/train_dir/default_experiment/checkpoint_p0/checkpoint_000000000_0.pth [2023-03-02 18:31:36,603][1041348] Stopping LearnerWorker_p0... [2023-03-02 18:31:36,603][1041348] Loop learner_proc0_evt_loop terminating... [2023-03-02 18:32:22,274][1045180] Saving configuration to /home/qgallouedec/train_dir/default_experiment/config.json... [2023-03-02 18:32:22,275][1045180] Rollout worker 0 uses device cpu [2023-03-02 18:32:22,275][1045180] Rollout worker 1 uses device cpu [2023-03-02 18:32:22,275][1045180] Rollout worker 2 uses device cpu [2023-03-02 18:32:22,275][1045180] Rollout worker 3 uses device cpu [2023-03-02 18:32:22,275][1045180] Rollout worker 4 uses device cpu [2023-03-02 18:32:22,275][1045180] Rollout worker 5 uses device cpu [2023-03-02 18:32:22,276][1045180] Rollout worker 6 uses device cpu [2023-03-02 18:32:22,276][1045180] Rollout worker 7 uses device cpu [2023-03-02 18:32:22,276][1045180] Rollout worker 8 uses device cpu [2023-03-02 18:32:22,276][1045180] Rollout worker 9 uses device cpu [2023-03-02 18:32:22,276][1045180] Rollout worker 10 uses device cpu [2023-03-02 18:32:22,276][1045180] Rollout worker 11 uses device cpu [2023-03-02 18:32:22,276][1045180] Rollout worker 12 uses device cpu [2023-03-02 18:32:22,277][1045180] Rollout worker 13 uses device cpu [2023-03-02 18:32:22,277][1045180] Rollout worker 14 uses device cpu [2023-03-02 18:32:22,277][1045180] Rollout worker 15 uses device cpu [2023-03-02 18:32:22,277][1045180] Rollout worker 16 uses device cpu [2023-03-02 18:32:22,277][1045180] Rollout worker 17 uses device cpu [2023-03-02 18:32:22,277][1045180] Rollout worker 18 uses device cpu [2023-03-02 18:32:22,277][1045180] Rollout worker 19 uses device cpu [2023-03-02 18:32:22,278][1045180] Rollout worker 20 uses device cpu [2023-03-02 18:32:22,278][1045180] Rollout worker 21 uses device cpu [2023-03-02 18:32:22,278][1045180] Rollout worker 22 uses device cpu [2023-03-02 18:32:22,278][1045180] Rollout worker 23 uses device cpu [2023-03-02 18:32:22,278][1045180] Rollout worker 24 uses device cpu [2023-03-02 18:32:22,278][1045180] Rollout worker 25 uses device cpu [2023-03-02 18:32:22,278][1045180] Rollout worker 26 uses device cpu [2023-03-02 18:32:22,279][1045180] Rollout worker 27 uses device cpu [2023-03-02 18:32:22,279][1045180] Rollout worker 28 uses device cpu [2023-03-02 18:32:22,279][1045180] Rollout worker 29 uses device cpu [2023-03-02 18:32:22,279][1045180] Rollout worker 30 uses device cpu [2023-03-02 18:32:22,279][1045180] Rollout worker 31 uses device cpu [2023-03-02 18:32:22,294][1045180] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-02 18:32:22,294][1045180] InferenceWorker_p0-w0: min num requests: 10 [2023-03-02 18:32:22,360][1045180] Starting all processes... [2023-03-02 18:32:22,360][1045180] Starting process learner_proc0 [2023-03-02 18:32:22,410][1045180] Starting all processes... [2023-03-02 18:32:22,460][1045180] Starting process inference_proc0-0 [2023-03-02 18:32:22,468][1045180] Starting process rollout_proc0 [2023-03-02 18:32:22,468][1045180] Starting process rollout_proc1 [2023-03-02 18:32:22,468][1045180] Starting process rollout_proc2 [2023-03-02 18:32:22,468][1045180] Starting process rollout_proc3 [2023-03-02 18:32:22,469][1045180] Starting process rollout_proc4 [2023-03-02 18:32:22,471][1045180] Starting process rollout_proc5 [2023-03-02 18:32:22,477][1045180] Starting process rollout_proc6 [2023-03-02 18:32:22,477][1045180] Starting process rollout_proc7 [2023-03-02 18:32:22,478][1045180] Starting process rollout_proc8 [2023-03-02 18:32:22,480][1045180] Starting process rollout_proc9 [2023-03-02 18:32:22,480][1045180] Starting process rollout_proc10 [2023-03-02 18:32:22,485][1045180] Starting process rollout_proc11 [2023-03-02 18:32:22,490][1045180] Starting process rollout_proc12 [2023-03-02 18:32:22,490][1045180] Starting process rollout_proc13 [2023-03-02 18:32:22,490][1045180] Starting process rollout_proc14 [2023-03-02 18:32:22,491][1045180] Starting process rollout_proc15 [2023-03-02 18:32:22,491][1045180] Starting process rollout_proc16 [2023-03-02 18:32:22,494][1045180] Starting process rollout_proc17 [2023-03-02 18:32:22,501][1045180] Starting process rollout_proc18 [2023-03-02 18:32:22,502][1045180] Starting process rollout_proc19 [2023-03-02 18:32:22,502][1045180] Starting process rollout_proc20 [2023-03-02 18:32:22,509][1045180] Starting process rollout_proc21 [2023-03-02 18:32:22,526][1045180] Starting process rollout_proc22 [2023-03-02 18:32:22,529][1045180] Starting process rollout_proc23 [2023-03-02 18:32:22,560][1045180] Starting process rollout_proc24 [2023-03-02 18:32:22,565][1045180] Starting process rollout_proc25 [2023-03-02 18:32:22,580][1045180] Starting process rollout_proc26 [2023-03-02 18:32:22,580][1045180] Starting process rollout_proc27 [2023-03-02 18:32:22,612][1045180] Starting process rollout_proc28 [2023-03-02 18:32:22,613][1045180] Starting process rollout_proc29 [2023-03-02 18:32:22,614][1045180] Starting process rollout_proc30 [2023-03-02 18:32:22,619][1045180] Starting process rollout_proc31 [2023-03-02 18:32:24,266][1045448] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-02 18:32:24,266][1045448] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0 [2023-03-02 18:32:24,277][1045448] Num visible devices: 1 [2023-03-02 18:32:24,332][1045448] WARNING! It is generally recommended to enable Fixed KL loss (https://arxiv.org/pdf/1707.06347.pdf) for continuous action tasks to avoid potential numerical issues. I.e. set --kl_loss_coeff=0.1 [2023-03-02 18:32:24,333][1045448] Starting seed is not provided [2023-03-02 18:32:24,333][1045448] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-02 18:32:24,333][1045448] Initializing actor-critic model on device cuda:0 [2023-03-02 18:32:24,333][1045448] RunningMeanStd input shape: (39,) [2023-03-02 18:32:24,334][1045448] RunningMeanStd input shape: (1,) [2023-03-02 18:32:24,464][1045448] Created Actor Critic model with architecture: [2023-03-02 18:32:24,465][1045448] ActorCriticSharedWeights( (obs_normalizer): ObservationNormalizer( (running_mean_std): RunningMeanStdDictInPlace( (running_mean_std): ModuleDict( (obs): RunningMeanStdInPlace() ) ) ) (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace) (encoder): MultiInputEncoder( (encoders): ModuleDict( (obs): MlpEncoder( (mlp_head): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Linear) (1): RecursiveScriptModule(original_name=ELU) (2): RecursiveScriptModule(original_name=Linear) (3): RecursiveScriptModule(original_name=ELU) ) ) ) ) (core): ModelCoreRNN( (core): GRU(512, 512) ) (decoder): MlpDecoder( (mlp): Identity() ) (critic_linear): Linear(in_features=512, out_features=1, bias=True) (action_parameterization): ActionParameterizationDefault( (distribution_linear): Linear(in_features=512, out_features=8, bias=True) ) ) [2023-03-02 18:32:24,527][1045507] Worker 6 uses CPU cores [6] [2023-03-02 18:32:24,616][1045667] Worker 13 uses CPU cores [13] [2023-03-02 18:32:24,727][1045501] Worker 1 uses CPU cores [1] [2023-03-02 18:32:24,727][1045665] Worker 9 uses CPU cores [9] [2023-03-02 18:32:25,022][1045670] Worker 16 uses CPU cores [16] [2023-03-02 18:32:25,098][1045500] Worker 0 uses CPU cores [0] [2023-03-02 18:32:25,108][1045998] Worker 25 uses CPU cores [25] [2023-03-02 18:32:25,259][1045504] Worker 4 uses CPU cores [4] [2023-03-02 18:32:25,445][1045666] Worker 8 uses CPU cores [8] [2023-03-02 18:32:25,530][1045933] Worker 27 uses CPU cores [27] [2023-03-02 18:32:25,534][1045932] Worker 28 uses CPU cores [28] [2023-03-02 18:32:25,798][1045671] Worker 18 uses CPU cores [18] [2023-03-02 18:32:25,871][1045499] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-02 18:32:25,871][1045499] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0 [2023-03-02 18:32:25,882][1045499] Num visible devices: 1 [2023-03-02 18:32:25,953][1045770] Worker 21 uses CPU cores [21] [2023-03-02 18:32:25,961][1045668] Worker 12 uses CPU cores [12] [2023-03-02 18:32:26,222][1045664] Worker 11 uses CPU cores [11] [2023-03-02 18:32:26,223][1045448] Using optimizer <class 'torch.optim.adam.Adam'> [2023-03-02 18:32:26,223][1045448] Loading state from checkpoint /home/qgallouedec/train_dir/default_experiment/checkpoint_p0/checkpoint_000001599_1637376.pth... [2023-03-02 18:32:26,246][1045448] Loading model from checkpoint [2023-03-02 18:32:26,263][1045448] Loaded experiment state at self.train_step=1599, self.env_steps=1637376 [2023-03-02 18:32:26,271][1045448] Initialized policy 0 weights for model version 1599 [2023-03-02 18:32:26,286][1045448] LearnerWorker_p0 finished initialization! [2023-03-02 18:32:26,287][1045448] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-02 18:32:26,317][1045834] Worker 22 uses CPU cores [22] [2023-03-02 18:32:26,368][1045499] RunningMeanStd input shape: (39,) [2023-03-02 18:32:26,368][1045499] RunningMeanStd input shape: (1,) [2023-03-02 18:32:26,442][1045706] Worker 19 uses CPU cores [19] [2023-03-02 18:32:26,542][1045738] Worker 20 uses CPU cores [20] [2023-03-02 18:32:26,576][1045669] Worker 17 uses CPU cores [17] [2023-03-02 18:32:26,722][1045705] Worker 15 uses CPU cores [15] [2023-03-02 18:32:26,790][1045502] Worker 2 uses CPU cores [2] [2023-03-02 18:32:26,835][1045930] Worker 26 uses CPU cores [26] [2023-03-02 18:32:27,003][1045578] Worker 7 uses CPU cores [7] [2023-03-02 18:32:27,034][1045929] Worker 24 uses CPU cores [24] [2023-03-02 18:32:27,262][1045601] Worker 10 uses CPU cores [10] [2023-03-02 18:32:27,271][1045503] Worker 3 uses CPU cores [3] [2023-03-02 18:32:27,275][1045180] Inference worker 0-0 is ready! [2023-03-02 18:32:27,275][1045180] All inference workers are ready! Signal rollout workers to start! [2023-03-02 18:32:27,458][1046030] Worker 31 uses CPU cores [31] [2023-03-02 18:32:27,771][1045965] Worker 29 uses CPU cores [29] [2023-03-02 18:32:27,885][1045897] Worker 23 uses CPU cores [23] [2023-03-02 18:32:27,910][1045673] Worker 14 uses CPU cores [14] [2023-03-02 18:32:28,151][1045505] Worker 5 uses CPU cores [5] [2023-03-02 18:32:28,219][1045997] Worker 30 uses CPU cores [30] [2023-03-02 18:32:28,652][1045770] Decorrelating experience for 0 frames... [2023-03-02 18:32:28,673][1045578] Decorrelating experience for 0 frames... [2023-03-02 18:32:28,701][1045667] Decorrelating experience for 0 frames... [2023-03-02 18:32:28,827][1045668] Decorrelating experience for 0 frames... [2023-03-02 18:32:28,857][1045834] Decorrelating experience for 0 frames... [2023-03-02 18:32:28,873][1045671] Decorrelating experience for 0 frames... [2023-03-02 18:32:28,888][1045502] Decorrelating experience for 0 frames... [2023-03-02 18:32:28,890][1045930] Decorrelating experience for 0 frames... [2023-03-02 18:32:28,896][1045998] Decorrelating experience for 0 frames... [2023-03-02 18:32:28,897][1045665] Decorrelating experience for 0 frames... [2023-03-02 18:32:28,904][1045706] Decorrelating experience for 0 frames... [2023-03-02 18:32:28,906][1045933] Decorrelating experience for 0 frames... [2023-03-02 18:32:28,913][1045501] Decorrelating experience for 0 frames... [2023-03-02 18:32:28,913][1045669] Decorrelating experience for 0 frames... [2023-03-02 18:32:28,938][1045507] Decorrelating experience for 0 frames... [2023-03-02 18:32:28,940][1045738] Decorrelating experience for 0 frames... [2023-03-02 18:32:28,959][1045929] Decorrelating experience for 0 frames... [2023-03-02 18:32:28,964][1045705] Decorrelating experience for 0 frames... [2023-03-02 18:32:28,982][1045670] Decorrelating experience for 0 frames... [2023-03-02 18:32:29,004][1045500] Decorrelating experience for 0 frames... [2023-03-02 18:32:29,007][1045666] Decorrelating experience for 0 frames... [2023-03-02 18:32:29,031][1045932] Decorrelating experience for 0 frames... [2023-03-02 18:32:29,059][1045504] Decorrelating experience for 0 frames... [2023-03-02 18:32:29,186][1046030] Decorrelating experience for 0 frames... [2023-03-02 18:32:29,207][1045503] Decorrelating experience for 0 frames... [2023-03-02 18:32:29,215][1045601] Decorrelating experience for 0 frames... [2023-03-02 18:32:29,313][1045180] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 1637376. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-03-02 18:32:29,476][1045965] Decorrelating experience for 0 frames... [2023-03-02 18:32:29,511][1045664] Decorrelating experience for 0 frames... [2023-03-02 18:32:29,675][1045897] Decorrelating experience for 0 frames... [2023-03-02 18:32:29,822][1045673] Decorrelating experience for 0 frames... [2023-03-02 18:32:30,126][1045505] Decorrelating experience for 0 frames... [2023-03-02 18:32:30,214][1045770] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,232][1045578] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,241][1045997] Decorrelating experience for 0 frames... [2023-03-02 18:32:30,388][1045667] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,404][1045834] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,437][1045930] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,438][1045998] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,460][1045668] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,469][1045671] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,471][1045669] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,471][1045502] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,474][1045706] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,500][1045507] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,537][1045500] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,542][1045501] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,550][1045932] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,575][1045705] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,578][1045933] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,618][1045929] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,645][1045504] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,662][1045666] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,677][1046030] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,681][1045665] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,697][1045503] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,716][1045738] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,727][1045670] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,735][1045601] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,916][1045965] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,938][1045664] Decorrelating experience for 32 frames... [2023-03-02 18:32:30,944][1045897] Decorrelating experience for 32 frames... [2023-03-02 18:32:31,067][1045448] Signal inference workers to stop experience collection... [2023-03-02 18:32:31,071][1045499] InferenceWorker_p0-w0: stopping experience collection [2023-03-02 18:32:31,250][1045673] Decorrelating experience for 32 frames... [2023-03-02 18:32:31,274][1045505] Decorrelating experience for 32 frames... [2023-03-02 18:32:31,344][1045448] Signal inference workers to resume experience collection... [2023-03-02 18:32:31,345][1045499] InferenceWorker_p0-w0: resuming experience collection [2023-03-02 18:32:31,510][1045997] Decorrelating experience for 32 frames... [2023-03-02 18:32:32,593][1045499] Updated weights for policy 0, policy_version 1609 (0.0221) [2023-03-02 18:32:33,440][1045499] Updated weights for policy 0, policy_version 1619 (0.0007) [2023-03-02 18:32:34,284][1045499] Updated weights for policy 0, policy_version 1629 (0.0007) [2023-03-02 18:32:34,313][1045180] Fps is (10 sec: 6144.2, 60 sec: 6144.2, 300 sec: 6144.2). Total num frames: 1668096. Throughput: 0: 3999.1. Samples: 19995. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0) [2023-03-02 18:32:34,314][1045180] Avg episode reward: [(0, '28.052')] [2023-03-02 18:32:35,152][1045499] Updated weights for policy 0, policy_version 1639 (0.0006) [2023-03-02 18:32:35,961][1045499] Updated weights for policy 0, policy_version 1649 (0.0007) [2023-03-02 18:32:36,806][1045499] Updated weights for policy 0, policy_version 1659 (0.0007) [2023-03-02 18:32:37,621][1045499] Updated weights for policy 0, policy_version 1669 (0.0006) [2023-03-02 18:32:38,466][1045499] Updated weights for policy 0, policy_version 1679 (0.0006) [2023-03-02 18:32:39,291][1045499] Updated weights for policy 0, policy_version 1689 (0.0007) [2023-03-02 18:32:39,313][1045180] Fps is (10 sec: 9216.1, 60 sec: 9216.1, 300 sec: 9216.1). Total num frames: 1729536. Throughput: 0: 9334.2. Samples: 93341. Policy #0 lag: (min: 0.0, avg: 1.4, max: 3.0) [2023-03-02 18:32:39,314][1045180] Avg episode reward: [(0, '31.189')] [2023-03-02 18:32:40,122][1045499] Updated weights for policy 0, policy_version 1699 (0.0007) [2023-03-02 18:32:40,969][1045499] Updated weights for policy 0, policy_version 1709 (0.0007) [2023-03-02 18:32:41,799][1045499] Updated weights for policy 0, policy_version 1719 (0.0007) [2023-03-02 18:32:42,289][1045180] Heartbeat connected on Batcher_0 [2023-03-02 18:32:42,291][1045180] Heartbeat connected on LearnerWorker_p0 [2023-03-02 18:32:42,296][1045180] Heartbeat connected on RolloutWorker_w0 [2023-03-02 18:32:42,297][1045180] Heartbeat connected on InferenceWorker_p0-w0 [2023-03-02 18:32:42,298][1045180] Heartbeat connected on RolloutWorker_w1 [2023-03-02 18:32:42,302][1045180] Heartbeat connected on RolloutWorker_w2 [2023-03-02 18:32:42,302][1045180] Heartbeat connected on RolloutWorker_w3 [2023-03-02 18:32:42,307][1045180] Heartbeat connected on RolloutWorker_w4 [2023-03-02 18:32:42,307][1045180] Heartbeat connected on RolloutWorker_w5 [2023-03-02 18:32:42,309][1045180] Heartbeat connected on RolloutWorker_w6 [2023-03-02 18:32:42,311][1045180] Heartbeat connected on RolloutWorker_w7 [2023-03-02 18:32:42,315][1045180] Heartbeat connected on RolloutWorker_w9 [2023-03-02 18:32:42,320][1045180] Heartbeat connected on RolloutWorker_w11 [2023-03-02 18:32:42,321][1045180] Heartbeat connected on RolloutWorker_w12 [2023-03-02 18:32:42,323][1045180] Heartbeat connected on RolloutWorker_w13 [2023-03-02 18:32:42,325][1045180] Heartbeat connected on RolloutWorker_w10 [2023-03-02 18:32:42,326][1045180] Heartbeat connected on RolloutWorker_w14 [2023-03-02 18:32:42,327][1045180] Heartbeat connected on RolloutWorker_w15 [2023-03-02 18:32:42,329][1045180] Heartbeat connected on RolloutWorker_w16 [2023-03-02 18:32:42,330][1045180] Heartbeat connected on RolloutWorker_w8 [2023-03-02 18:32:42,331][1045180] Heartbeat connected on RolloutWorker_w17 [2023-03-02 18:32:42,333][1045180] Heartbeat connected on RolloutWorker_w18 [2023-03-02 18:32:42,336][1045180] Heartbeat connected on RolloutWorker_w19 [2023-03-02 18:32:42,337][1045180] Heartbeat connected on RolloutWorker_w20 [2023-03-02 18:32:42,340][1045180] Heartbeat connected on RolloutWorker_w22 [2023-03-02 18:32:42,342][1045180] Heartbeat connected on RolloutWorker_w21 [2023-03-02 18:32:42,343][1045180] Heartbeat connected on RolloutWorker_w23 [2023-03-02 18:32:42,345][1045180] Heartbeat connected on RolloutWorker_w24 [2023-03-02 18:32:42,346][1045180] Heartbeat connected on RolloutWorker_w25 [2023-03-02 18:32:42,348][1045180] Heartbeat connected on RolloutWorker_w26 [2023-03-02 18:32:42,352][1045180] Heartbeat connected on RolloutWorker_w27 [2023-03-02 18:32:42,353][1045180] Heartbeat connected on RolloutWorker_w28 [2023-03-02 18:32:42,354][1045180] Heartbeat connected on RolloutWorker_w29 [2023-03-02 18:32:42,357][1045180] Heartbeat connected on RolloutWorker_w30 [2023-03-02 18:32:42,358][1045180] Heartbeat connected on RolloutWorker_w31 [2023-03-02 18:32:42,660][1045499] Updated weights for policy 0, policy_version 1729 (0.0006) [2023-03-02 18:32:43,492][1045499] Updated weights for policy 0, policy_version 1739 (0.0006) [2023-03-02 18:32:44,313][1045180] Fps is (10 sec: 12288.0, 60 sec: 10240.1, 300 sec: 10240.1). Total num frames: 1790976. Throughput: 0: 8660.7. Samples: 129910. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:32:44,314][1045180] Avg episode reward: [(0, '27.934')] [2023-03-02 18:32:44,315][1045499] Updated weights for policy 0, policy_version 1749 (0.0007) [2023-03-02 18:32:45,142][1045499] Updated weights for policy 0, policy_version 1759 (0.0007) [2023-03-02 18:32:45,969][1045499] Updated weights for policy 0, policy_version 1769 (0.0006) [2023-03-02 18:32:46,800][1045499] Updated weights for policy 0, policy_version 1779 (0.0007) [2023-03-02 18:32:47,637][1045499] Updated weights for policy 0, policy_version 1789 (0.0008) [2023-03-02 18:32:48,459][1045499] Updated weights for policy 0, policy_version 1799 (0.0006) [2023-03-02 18:32:49,262][1045499] Updated weights for policy 0, policy_version 1809 (0.0007) [2023-03-02 18:32:49,313][1045180] Fps is (10 sec: 12288.0, 60 sec: 10752.1, 300 sec: 10752.1). Total num frames: 1852416. Throughput: 0: 10205.5. Samples: 204110. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:32:49,314][1045180] Avg episode reward: [(0, '26.200')] [2023-03-02 18:32:50,097][1045499] Updated weights for policy 0, policy_version 1819 (0.0007) [2023-03-02 18:32:50,900][1045499] Updated weights for policy 0, policy_version 1829 (0.0006) [2023-03-02 18:32:51,717][1045499] Updated weights for policy 0, policy_version 1839 (0.0007) [2023-03-02 18:32:52,571][1045499] Updated weights for policy 0, policy_version 1849 (0.0008) [2023-03-02 18:32:53,403][1045499] Updated weights for policy 0, policy_version 1859 (0.0006) [2023-03-02 18:32:54,275][1045499] Updated weights for policy 0, policy_version 1869 (0.0006) [2023-03-02 18:32:54,313][1045180] Fps is (10 sec: 12287.8, 60 sec: 11059.2, 300 sec: 11059.2). Total num frames: 1913856. Throughput: 0: 11121.8. Samples: 278046. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:32:54,314][1045180] Avg episode reward: [(0, '27.038')] [2023-03-02 18:32:55,144][1045499] Updated weights for policy 0, policy_version 1879 (0.0007) [2023-03-02 18:32:55,959][1045499] Updated weights for policy 0, policy_version 1889 (0.0006) [2023-03-02 18:32:56,821][1045499] Updated weights for policy 0, policy_version 1899 (0.0007) [2023-03-02 18:32:57,656][1045499] Updated weights for policy 0, policy_version 1909 (0.0007) [2023-03-02 18:32:58,479][1045499] Updated weights for policy 0, policy_version 1919 (0.0007) [2023-03-02 18:32:59,311][1045499] Updated weights for policy 0, policy_version 1929 (0.0007) [2023-03-02 18:32:59,313][1045180] Fps is (10 sec: 12288.0, 60 sec: 11264.0, 300 sec: 11264.0). Total num frames: 1975296. Throughput: 0: 10472.7. Samples: 314181. Policy #0 lag: (min: 0.0, avg: 1.4, max: 3.0) [2023-03-02 18:32:59,314][1045180] Avg episode reward: [(0, '30.690')] [2023-03-02 18:33:00,170][1045499] Updated weights for policy 0, policy_version 1939 (0.0007) [2023-03-02 18:33:00,999][1045499] Updated weights for policy 0, policy_version 1949 (0.0008) [2023-03-02 18:33:01,827][1045499] Updated weights for policy 0, policy_version 1959 (0.0007) [2023-03-02 18:33:02,642][1045499] Updated weights for policy 0, policy_version 1969 (0.0007) [2023-03-02 18:33:03,507][1045499] Updated weights for policy 0, policy_version 1979 (0.0006) [2023-03-02 18:33:04,313][1045180] Fps is (10 sec: 12185.7, 60 sec: 11381.0, 300 sec: 11381.0). Total num frames: 2035712. Throughput: 0: 11079.9. Samples: 387797. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:33:04,314][1045180] Avg episode reward: [(0, '41.201')] [2023-03-02 18:33:04,314][1045448] Saving new best policy, reward=41.201! [2023-03-02 18:33:04,369][1045499] Updated weights for policy 0, policy_version 1989 (0.0006) [2023-03-02 18:33:05,165][1045499] Updated weights for policy 0, policy_version 1999 (0.0006) [2023-03-02 18:33:05,991][1045499] Updated weights for policy 0, policy_version 2009 (0.0007) [2023-03-02 18:33:06,863][1045499] Updated weights for policy 0, policy_version 2019 (0.0006) [2023-03-02 18:33:07,660][1045499] Updated weights for policy 0, policy_version 2029 (0.0006) [2023-03-02 18:33:08,507][1045499] Updated weights for policy 0, policy_version 2039 (0.0006) [2023-03-02 18:33:09,313][1045180] Fps is (10 sec: 12185.4, 60 sec: 11494.4, 300 sec: 11494.4). Total num frames: 2097152. Throughput: 0: 11538.3. Samples: 461533. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:33:09,314][1045180] Avg episode reward: [(0, '40.773')] [2023-03-02 18:33:09,322][1045499] Updated weights for policy 0, policy_version 2049 (0.0008) [2023-03-02 18:33:10,151][1045499] Updated weights for policy 0, policy_version 2059 (0.0007) [2023-03-02 18:33:10,984][1045499] Updated weights for policy 0, policy_version 2069 (0.0007) [2023-03-02 18:33:11,809][1045499] Updated weights for policy 0, policy_version 2079 (0.0007) [2023-03-02 18:33:12,638][1045499] Updated weights for policy 0, policy_version 2089 (0.0007) [2023-03-02 18:33:13,490][1045499] Updated weights for policy 0, policy_version 2099 (0.0007) [2023-03-02 18:33:14,313][1045180] Fps is (10 sec: 12288.0, 60 sec: 11582.6, 300 sec: 11582.6). Total num frames: 2158592. Throughput: 0: 11080.8. Samples: 498637. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0) [2023-03-02 18:33:14,314][1045180] Avg episode reward: [(0, '27.381')] [2023-03-02 18:33:14,317][1045499] Updated weights for policy 0, policy_version 2109 (0.0006) [2023-03-02 18:33:15,138][1045499] Updated weights for policy 0, policy_version 2119 (0.0007) [2023-03-02 18:33:15,965][1045499] Updated weights for policy 0, policy_version 2129 (0.0006) [2023-03-02 18:33:16,792][1045499] Updated weights for policy 0, policy_version 2139 (0.0007) [2023-03-02 18:33:17,635][1045499] Updated weights for policy 0, policy_version 2149 (0.0009) [2023-03-02 18:33:18,464][1045499] Updated weights for policy 0, policy_version 2159 (0.0007) [2023-03-02 18:33:19,313][1045180] Fps is (10 sec: 12288.0, 60 sec: 11653.1, 300 sec: 11653.1). Total num frames: 2220032. Throughput: 0: 12273.1. Samples: 572287. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:33:19,314][1045180] Avg episode reward: [(0, '33.109')] [2023-03-02 18:33:19,327][1045499] Updated weights for policy 0, policy_version 2169 (0.0007) [2023-03-02 18:33:20,138][1045499] Updated weights for policy 0, policy_version 2179 (0.0006) [2023-03-02 18:33:20,983][1045499] Updated weights for policy 0, policy_version 2189 (0.0007) [2023-03-02 18:33:21,812][1045499] Updated weights for policy 0, policy_version 2199 (0.0007) [2023-03-02 18:33:22,645][1045499] Updated weights for policy 0, policy_version 2209 (0.0006) [2023-03-02 18:33:23,468][1045499] Updated weights for policy 0, policy_version 2219 (0.0007) [2023-03-02 18:33:24,308][1045499] Updated weights for policy 0, policy_version 2229 (0.0007) [2023-03-02 18:33:24,313][1045180] Fps is (10 sec: 12390.4, 60 sec: 11729.5, 300 sec: 11729.5). Total num frames: 2282496. Throughput: 0: 12281.5. Samples: 646009. Policy #0 lag: (min: 0.0, avg: 1.4, max: 3.0) [2023-03-02 18:33:24,314][1045180] Avg episode reward: [(0, '34.832')] [2023-03-02 18:33:25,126][1045499] Updated weights for policy 0, policy_version 2239 (0.0006) [2023-03-02 18:33:25,922][1045499] Updated weights for policy 0, policy_version 2249 (0.0007) [2023-03-02 18:33:26,781][1045499] Updated weights for policy 0, policy_version 2259 (0.0006) [2023-03-02 18:33:27,583][1045499] Updated weights for policy 0, policy_version 2269 (0.0008) [2023-03-02 18:33:28,417][1045499] Updated weights for policy 0, policy_version 2279 (0.0006) [2023-03-02 18:33:29,245][1045499] Updated weights for policy 0, policy_version 2289 (0.0007) [2023-03-02 18:33:29,313][1045180] Fps is (10 sec: 12390.5, 60 sec: 11776.0, 300 sec: 11776.0). Total num frames: 2343936. Throughput: 0: 12302.3. Samples: 683514. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:33:29,314][1045180] Avg episode reward: [(0, '29.408')] [2023-03-02 18:33:30,083][1045499] Updated weights for policy 0, policy_version 2299 (0.0006) [2023-03-02 18:33:30,917][1045499] Updated weights for policy 0, policy_version 2309 (0.0007) [2023-03-02 18:33:31,777][1045499] Updated weights for policy 0, policy_version 2319 (0.0006) [2023-03-02 18:33:32,603][1045499] Updated weights for policy 0, policy_version 2329 (0.0006) [2023-03-02 18:33:33,417][1045499] Updated weights for policy 0, policy_version 2339 (0.0007) [2023-03-02 18:33:34,264][1045499] Updated weights for policy 0, policy_version 2349 (0.0008) [2023-03-02 18:33:34,313][1045180] Fps is (10 sec: 12288.0, 60 sec: 12288.0, 300 sec: 11815.4). Total num frames: 2405376. Throughput: 0: 12292.6. Samples: 757280. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:33:34,314][1045180] Avg episode reward: [(0, '30.578')] [2023-03-02 18:33:35,086][1045499] Updated weights for policy 0, policy_version 2359 (0.0006) [2023-03-02 18:33:35,899][1045499] Updated weights for policy 0, policy_version 2369 (0.0007) [2023-03-02 18:33:36,741][1045499] Updated weights for policy 0, policy_version 2379 (0.0007) [2023-03-02 18:33:37,546][1045499] Updated weights for policy 0, policy_version 2389 (0.0007) [2023-03-02 18:33:38,362][1045499] Updated weights for policy 0, policy_version 2399 (0.0006) [2023-03-02 18:33:39,236][1045499] Updated weights for policy 0, policy_version 2409 (0.0007) [2023-03-02 18:33:39,313][1045180] Fps is (10 sec: 12288.0, 60 sec: 12288.0, 300 sec: 11849.2). Total num frames: 2466816. Throughput: 0: 12294.8. Samples: 831309. Policy #0 lag: (min: 0.0, avg: 1.4, max: 3.0) [2023-03-02 18:33:39,314][1045180] Avg episode reward: [(0, '34.766')] [2023-03-02 18:33:40,028][1045499] Updated weights for policy 0, policy_version 2419 (0.0006) [2023-03-02 18:33:40,840][1045499] Updated weights for policy 0, policy_version 2429 (0.0007) [2023-03-02 18:33:41,676][1045499] Updated weights for policy 0, policy_version 2439 (0.0007) [2023-03-02 18:33:42,504][1045499] Updated weights for policy 0, policy_version 2449 (0.0006) [2023-03-02 18:33:43,318][1045499] Updated weights for policy 0, policy_version 2459 (0.0006) [2023-03-02 18:33:44,148][1045499] Updated weights for policy 0, policy_version 2469 (0.0006) [2023-03-02 18:33:44,313][1045180] Fps is (10 sec: 12492.9, 60 sec: 12322.1, 300 sec: 11905.7). Total num frames: 2530304. Throughput: 0: 12329.4. Samples: 869003. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:33:44,314][1045180] Avg episode reward: [(0, '36.567')] [2023-03-02 18:33:44,967][1045499] Updated weights for policy 0, policy_version 2479 (0.0007) [2023-03-02 18:33:45,777][1045499] Updated weights for policy 0, policy_version 2489 (0.0006) [2023-03-02 18:33:46,618][1045499] Updated weights for policy 0, policy_version 2499 (0.0006) [2023-03-02 18:33:47,439][1045499] Updated weights for policy 0, policy_version 2509 (0.0007) [2023-03-02 18:33:48,277][1045499] Updated weights for policy 0, policy_version 2519 (0.0007) [2023-03-02 18:33:49,092][1045499] Updated weights for policy 0, policy_version 2529 (0.0007) [2023-03-02 18:33:49,313][1045180] Fps is (10 sec: 12492.9, 60 sec: 12322.1, 300 sec: 11929.6). Total num frames: 2591744. Throughput: 0: 12347.2. Samples: 943419. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:33:49,314][1045180] Avg episode reward: [(0, '43.631')] [2023-03-02 18:33:49,317][1045448] Saving new best policy, reward=43.631! [2023-03-02 18:33:49,950][1045499] Updated weights for policy 0, policy_version 2539 (0.0006) [2023-03-02 18:33:50,777][1045499] Updated weights for policy 0, policy_version 2549 (0.0006) [2023-03-02 18:33:51,598][1045499] Updated weights for policy 0, policy_version 2559 (0.0007) [2023-03-02 18:33:52,422][1045499] Updated weights for policy 0, policy_version 2569 (0.0006) [2023-03-02 18:33:53,256][1045499] Updated weights for policy 0, policy_version 2579 (0.0007) [2023-03-02 18:33:54,073][1045499] Updated weights for policy 0, policy_version 2589 (0.0006) [2023-03-02 18:33:54,313][1045180] Fps is (10 sec: 12288.1, 60 sec: 12322.2, 300 sec: 11950.7). Total num frames: 2653184. Throughput: 0: 12355.4. Samples: 1017525. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:33:54,314][1045180] Avg episode reward: [(0, '77.508')] [2023-03-02 18:33:54,314][1045448] Saving new best policy, reward=77.508! [2023-03-02 18:33:54,892][1045499] Updated weights for policy 0, policy_version 2599 (0.0007) [2023-03-02 18:33:55,719][1045499] Updated weights for policy 0, policy_version 2609 (0.0006) [2023-03-02 18:33:56,543][1045499] Updated weights for policy 0, policy_version 2619 (0.0006) [2023-03-02 18:33:57,385][1045499] Updated weights for policy 0, policy_version 2629 (0.0007) [2023-03-02 18:33:58,252][1045499] Updated weights for policy 0, policy_version 2639 (0.0007) [2023-03-02 18:33:59,071][1045499] Updated weights for policy 0, policy_version 2649 (0.0006) [2023-03-02 18:33:59,313][1045180] Fps is (10 sec: 12390.3, 60 sec: 12339.2, 300 sec: 11980.8). Total num frames: 2715648. Throughput: 0: 12353.1. Samples: 1054528. Policy #0 lag: (min: 0.0, avg: 1.0, max: 3.0) [2023-03-02 18:33:59,314][1045180] Avg episode reward: [(0, '74.012')] [2023-03-02 18:33:59,877][1045499] Updated weights for policy 0, policy_version 2659 (0.0008) [2023-03-02 18:34:00,713][1045499] Updated weights for policy 0, policy_version 2669 (0.0007) [2023-03-02 18:34:01,538][1045499] Updated weights for policy 0, policy_version 2679 (0.0006) [2023-03-02 18:34:02,368][1045499] Updated weights for policy 0, policy_version 2689 (0.0007) [2023-03-02 18:34:03,168][1045499] Updated weights for policy 0, policy_version 2699 (0.0006) [2023-03-02 18:34:03,985][1045499] Updated weights for policy 0, policy_version 2709 (0.0006) [2023-03-02 18:34:04,313][1045180] Fps is (10 sec: 12492.7, 60 sec: 12373.3, 300 sec: 12007.8). Total num frames: 2778112. Throughput: 0: 12371.6. Samples: 1129007. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:34:04,314][1045180] Avg episode reward: [(0, '75.130')] [2023-03-02 18:34:04,834][1045499] Updated weights for policy 0, policy_version 2719 (0.0008) [2023-03-02 18:34:05,669][1045499] Updated weights for policy 0, policy_version 2729 (0.0007) [2023-03-02 18:34:06,490][1045499] Updated weights for policy 0, policy_version 2739 (0.0006) [2023-03-02 18:34:07,330][1045499] Updated weights for policy 0, policy_version 2749 (0.0006) [2023-03-02 18:34:08,156][1045499] Updated weights for policy 0, policy_version 2759 (0.0006) [2023-03-02 18:34:09,004][1045499] Updated weights for policy 0, policy_version 2769 (0.0007) [2023-03-02 18:34:09,313][1045180] Fps is (10 sec: 12288.0, 60 sec: 12356.3, 300 sec: 12011.5). Total num frames: 2838528. Throughput: 0: 12374.0. Samples: 1202839. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:34:09,314][1045180] Avg episode reward: [(0, '79.370')] [2023-03-02 18:34:09,328][1045448] Saving new best policy, reward=79.370! [2023-03-02 18:34:09,816][1045499] Updated weights for policy 0, policy_version 2779 (0.0008) [2023-03-02 18:34:10,675][1045499] Updated weights for policy 0, policy_version 2789 (0.0007) [2023-03-02 18:34:11,495][1045499] Updated weights for policy 0, policy_version 2799 (0.0006) [2023-03-02 18:34:12,316][1045499] Updated weights for policy 0, policy_version 2809 (0.0006) [2023-03-02 18:34:13,151][1045499] Updated weights for policy 0, policy_version 2819 (0.0006) [2023-03-02 18:34:13,969][1045499] Updated weights for policy 0, policy_version 2829 (0.0007) [2023-03-02 18:34:14,313][1045180] Fps is (10 sec: 12288.1, 60 sec: 12373.4, 300 sec: 12034.5). Total num frames: 2900992. Throughput: 0: 12362.2. Samples: 1239811. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:34:14,314][1045180] Avg episode reward: [(0, '32.061')] [2023-03-02 18:34:14,802][1045499] Updated weights for policy 0, policy_version 2839 (0.0006) [2023-03-02 18:34:15,643][1045499] Updated weights for policy 0, policy_version 2849 (0.0006) [2023-03-02 18:34:16,488][1045499] Updated weights for policy 0, policy_version 2859 (0.0006) [2023-03-02 18:34:17,317][1045499] Updated weights for policy 0, policy_version 2869 (0.0006) [2023-03-02 18:34:18,128][1045499] Updated weights for policy 0, policy_version 2879 (0.0006) [2023-03-02 18:34:18,947][1045499] Updated weights for policy 0, policy_version 2889 (0.0006) [2023-03-02 18:34:19,313][1045180] Fps is (10 sec: 12390.3, 60 sec: 12373.3, 300 sec: 12046.0). Total num frames: 2962432. Throughput: 0: 12373.8. Samples: 1314102. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:34:19,314][1045180] Avg episode reward: [(0, '88.601')] [2023-03-02 18:34:19,331][1045448] Saving /home/qgallouedec/train_dir/default_experiment/checkpoint_p0/checkpoint_000002894_2963456.pth... [2023-03-02 18:34:19,362][1045448] Removing /home/qgallouedec/train_dir/default_experiment/checkpoint_p0/checkpoint_000001277_1307648.pth [2023-03-02 18:34:19,365][1045448] Saving new best policy, reward=88.601! [2023-03-02 18:34:19,768][1045499] Updated weights for policy 0, policy_version 2899 (0.0007) [2023-03-02 18:34:20,599][1045499] Updated weights for policy 0, policy_version 2909 (0.0006) [2023-03-02 18:34:21,415][1045499] Updated weights for policy 0, policy_version 2919 (0.0008) [2023-03-02 18:34:22,239][1045499] Updated weights for policy 0, policy_version 2929 (0.0007) [2023-03-02 18:34:23,070][1045499] Updated weights for policy 0, policy_version 2939 (0.0007) [2023-03-02 18:34:23,915][1045499] Updated weights for policy 0, policy_version 2949 (0.0007) [2023-03-02 18:34:24,313][1045180] Fps is (10 sec: 12287.9, 60 sec: 12356.3, 300 sec: 12056.5). Total num frames: 3023872. Throughput: 0: 12377.1. Samples: 1388276. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:34:24,314][1045180] Avg episode reward: [(0, '97.890')] [2023-03-02 18:34:24,322][1045448] Saving new best policy, reward=97.890! [2023-03-02 18:34:24,749][1045499] Updated weights for policy 0, policy_version 2959 (0.0007) [2023-03-02 18:34:25,556][1045499] Updated weights for policy 0, policy_version 2969 (0.0007) [2023-03-02 18:34:26,376][1045499] Updated weights for policy 0, policy_version 2979 (0.0007) [2023-03-02 18:34:27,231][1045499] Updated weights for policy 0, policy_version 2989 (0.0008) [2023-03-02 18:34:28,077][1045499] Updated weights for policy 0, policy_version 2999 (0.0006) [2023-03-02 18:34:28,905][1045499] Updated weights for policy 0, policy_version 3009 (0.0006) [2023-03-02 18:34:29,313][1045180] Fps is (10 sec: 12288.1, 60 sec: 12356.3, 300 sec: 12066.1). Total num frames: 3085312. Throughput: 0: 12361.4. Samples: 1425267. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:34:29,314][1045180] Avg episode reward: [(0, '100.699')] [2023-03-02 18:34:29,325][1045448] Saving new best policy, reward=100.699! [2023-03-02 18:34:29,726][1045499] Updated weights for policy 0, policy_version 3019 (0.0006) [2023-03-02 18:34:30,577][1045499] Updated weights for policy 0, policy_version 3029 (0.0006) [2023-03-02 18:34:31,391][1045499] Updated weights for policy 0, policy_version 3039 (0.0006) [2023-03-02 18:34:32,226][1045499] Updated weights for policy 0, policy_version 3049 (0.0007) [2023-03-02 18:34:33,077][1045499] Updated weights for policy 0, policy_version 3059 (0.0007) [2023-03-02 18:34:33,917][1045499] Updated weights for policy 0, policy_version 3069 (0.0008) [2023-03-02 18:34:34,313][1045180] Fps is (10 sec: 12287.9, 60 sec: 12356.3, 300 sec: 12075.0). Total num frames: 3146752. Throughput: 0: 12339.6. Samples: 1498704. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:34:34,314][1045180] Avg episode reward: [(0, '149.621')] [2023-03-02 18:34:34,314][1045448] Saving new best policy, reward=149.621! [2023-03-02 18:34:34,733][1045499] Updated weights for policy 0, policy_version 3079 (0.0007) [2023-03-02 18:34:35,554][1045499] Updated weights for policy 0, policy_version 3089 (0.0007) [2023-03-02 18:34:36,387][1045499] Updated weights for policy 0, policy_version 3099 (0.0007) [2023-03-02 18:34:37,192][1045499] Updated weights for policy 0, policy_version 3109 (0.0007) [2023-03-02 18:34:38,002][1045499] Updated weights for policy 0, policy_version 3119 (0.0007) [2023-03-02 18:34:38,820][1045499] Updated weights for policy 0, policy_version 3129 (0.0007) [2023-03-02 18:34:39,313][1045180] Fps is (10 sec: 12390.2, 60 sec: 12373.3, 300 sec: 12091.1). Total num frames: 3209216. Throughput: 0: 12356.9. Samples: 1573586. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:34:39,314][1045180] Avg episode reward: [(0, '172.615')] [2023-03-02 18:34:39,326][1045448] Saving new best policy, reward=172.615! [2023-03-02 18:34:39,661][1045499] Updated weights for policy 0, policy_version 3139 (0.0006) [2023-03-02 18:34:40,492][1045499] Updated weights for policy 0, policy_version 3149 (0.0007) [2023-03-02 18:34:41,338][1045499] Updated weights for policy 0, policy_version 3159 (0.0007) [2023-03-02 18:34:42,192][1045499] Updated weights for policy 0, policy_version 3169 (0.0008) [2023-03-02 18:34:43,043][1045499] Updated weights for policy 0, policy_version 3179 (0.0007) [2023-03-02 18:34:43,880][1045499] Updated weights for policy 0, policy_version 3189 (0.0007) [2023-03-02 18:34:44,313][1045180] Fps is (10 sec: 12390.4, 60 sec: 12339.2, 300 sec: 12098.4). Total num frames: 3270656. Throughput: 0: 12346.9. Samples: 1610137. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:34:44,314][1045180] Avg episode reward: [(0, '90.885')] [2023-03-02 18:34:44,732][1045499] Updated weights for policy 0, policy_version 3199 (0.0006) [2023-03-02 18:34:45,538][1045499] Updated weights for policy 0, policy_version 3209 (0.0007) [2023-03-02 18:34:46,358][1045499] Updated weights for policy 0, policy_version 3219 (0.0007) [2023-03-02 18:34:47,186][1045499] Updated weights for policy 0, policy_version 3229 (0.0007) [2023-03-02 18:34:48,024][1045499] Updated weights for policy 0, policy_version 3239 (0.0007) [2023-03-02 18:34:48,850][1045499] Updated weights for policy 0, policy_version 3249 (0.0006) [2023-03-02 18:34:49,313][1045180] Fps is (10 sec: 12288.1, 60 sec: 12339.2, 300 sec: 12105.1). Total num frames: 3332096. Throughput: 0: 12327.9. Samples: 1683764. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:34:49,314][1045180] Avg episode reward: [(0, '91.447')] [2023-03-02 18:34:49,672][1045499] Updated weights for policy 0, policy_version 3259 (0.0007) [2023-03-02 18:34:50,526][1045499] Updated weights for policy 0, policy_version 3269 (0.0007) [2023-03-02 18:34:51,351][1045499] Updated weights for policy 0, policy_version 3279 (0.0007) [2023-03-02 18:34:52,177][1045499] Updated weights for policy 0, policy_version 3289 (0.0008) [2023-03-02 18:34:52,982][1045499] Updated weights for policy 0, policy_version 3299 (0.0007) [2023-03-02 18:34:53,826][1045499] Updated weights for policy 0, policy_version 3309 (0.0007) [2023-03-02 18:34:54,313][1045180] Fps is (10 sec: 12288.0, 60 sec: 12339.2, 300 sec: 12111.5). Total num frames: 3393536. Throughput: 0: 12332.9. Samples: 1757821. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:34:54,314][1045180] Avg episode reward: [(0, '58.689')] [2023-03-02 18:34:54,646][1045499] Updated weights for policy 0, policy_version 3319 (0.0007) [2023-03-02 18:34:55,469][1045499] Updated weights for policy 0, policy_version 3329 (0.0007) [2023-03-02 18:34:56,294][1045499] Updated weights for policy 0, policy_version 3339 (0.0007) [2023-03-02 18:34:57,112][1045499] Updated weights for policy 0, policy_version 3349 (0.0007) [2023-03-02 18:34:57,991][1045499] Updated weights for policy 0, policy_version 3359 (0.0008) [2023-03-02 18:34:58,813][1045499] Updated weights for policy 0, policy_version 3369 (0.0006) [2023-03-02 18:34:59,313][1045180] Fps is (10 sec: 12288.0, 60 sec: 12322.1, 300 sec: 12117.3). Total num frames: 3454976. Throughput: 0: 12341.4. Samples: 1795176. Policy #0 lag: (min: 0.0, avg: 1.4, max: 3.0) [2023-03-02 18:34:59,314][1045180] Avg episode reward: [(0, '78.526')] [2023-03-02 18:34:59,641][1045499] Updated weights for policy 0, policy_version 3379 (0.0006) [2023-03-02 18:35:00,470][1045499] Updated weights for policy 0, policy_version 3389 (0.0006) [2023-03-02 18:35:01,276][1045499] Updated weights for policy 0, policy_version 3399 (0.0007) [2023-03-02 18:35:02,108][1045499] Updated weights for policy 0, policy_version 3409 (0.0007) [2023-03-02 18:35:02,935][1045499] Updated weights for policy 0, policy_version 3419 (0.0009) [2023-03-02 18:35:03,814][1045499] Updated weights for policy 0, policy_version 3429 (0.0007) [2023-03-02 18:35:04,313][1045180] Fps is (10 sec: 12288.0, 60 sec: 12305.1, 300 sec: 12122.8). Total num frames: 3516416. Throughput: 0: 12331.7. Samples: 1869030. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:35:04,314][1045180] Avg episode reward: [(0, '37.692')] [2023-03-02 18:35:04,667][1045499] Updated weights for policy 0, policy_version 3439 (0.0008) [2023-03-02 18:35:05,503][1045499] Updated weights for policy 0, policy_version 3449 (0.0007) [2023-03-02 18:35:06,332][1045499] Updated weights for policy 0, policy_version 3459 (0.0007) [2023-03-02 18:35:07,173][1045499] Updated weights for policy 0, policy_version 3469 (0.0006) [2023-03-02 18:35:07,988][1045499] Updated weights for policy 0, policy_version 3479 (0.0007) [2023-03-02 18:35:08,793][1045499] Updated weights for policy 0, policy_version 3489 (0.0007) [2023-03-02 18:35:09,313][1045180] Fps is (10 sec: 12390.4, 60 sec: 12339.2, 300 sec: 12134.4). Total num frames: 3578880. Throughput: 0: 12318.8. Samples: 1942621. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:35:09,314][1045180] Avg episode reward: [(0, '16.756')] [2023-03-02 18:35:09,617][1045499] Updated weights for policy 0, policy_version 3499 (0.0007) [2023-03-02 18:35:10,447][1045499] Updated weights for policy 0, policy_version 3509 (0.0007) [2023-03-02 18:35:11,273][1045499] Updated weights for policy 0, policy_version 3519 (0.0007) [2023-03-02 18:35:12,092][1045499] Updated weights for policy 0, policy_version 3529 (0.0006) [2023-03-02 18:35:12,933][1045499] Updated weights for policy 0, policy_version 3539 (0.0007) [2023-03-02 18:35:13,795][1045499] Updated weights for policy 0, policy_version 3549 (0.0007) [2023-03-02 18:35:14,313][1045180] Fps is (10 sec: 12390.5, 60 sec: 12322.1, 300 sec: 12139.1). Total num frames: 3640320. Throughput: 0: 12320.7. Samples: 1979700. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:35:14,314][1045180] Avg episode reward: [(0, '15.795')] [2023-03-02 18:35:14,619][1045499] Updated weights for policy 0, policy_version 3559 (0.0006) [2023-03-02 18:35:15,460][1045499] Updated weights for policy 0, policy_version 3569 (0.0006) [2023-03-02 18:35:16,285][1045499] Updated weights for policy 0, policy_version 3579 (0.0007) [2023-03-02 18:35:17,097][1045499] Updated weights for policy 0, policy_version 3589 (0.0006) [2023-03-02 18:35:17,956][1045499] Updated weights for policy 0, policy_version 3599 (0.0006) [2023-03-02 18:35:18,785][1045499] Updated weights for policy 0, policy_version 3609 (0.0007) [2023-03-02 18:35:19,313][1045180] Fps is (10 sec: 12288.0, 60 sec: 12322.1, 300 sec: 12143.4). Total num frames: 3701760. Throughput: 0: 12321.7. Samples: 2053180. Policy #0 lag: (min: 0.0, avg: 1.5, max: 3.0) [2023-03-02 18:35:19,314][1045180] Avg episode reward: [(0, '24.007')] [2023-03-02 18:35:19,607][1045499] Updated weights for policy 0, policy_version 3619 (0.0006) [2023-03-02 18:35:20,448][1045499] Updated weights for policy 0, policy_version 3629 (0.0006) [2023-03-02 18:35:21,280][1045499] Updated weights for policy 0, policy_version 3639 (0.0008) [2023-03-02 18:35:22,112][1045499] Updated weights for policy 0, policy_version 3649 (0.0006) [2023-03-02 18:35:22,956][1045499] Updated weights for policy 0, policy_version 3659 (0.0007) [2023-03-02 18:35:23,781][1045499] Updated weights for policy 0, policy_version 3669 (0.0007) [2023-03-02 18:35:24,313][1045180] Fps is (10 sec: 12288.1, 60 sec: 12322.1, 300 sec: 12147.6). Total num frames: 3763200. Throughput: 0: 12293.7. Samples: 2126801. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:35:24,314][1045180] Avg episode reward: [(0, '15.563')] [2023-03-02 18:35:24,657][1045499] Updated weights for policy 0, policy_version 3679 (0.0007) [2023-03-02 18:35:25,480][1045499] Updated weights for policy 0, policy_version 3689 (0.0006) [2023-03-02 18:35:26,302][1045499] Updated weights for policy 0, policy_version 3699 (0.0007) [2023-03-02 18:35:27,165][1045499] Updated weights for policy 0, policy_version 3709 (0.0006) [2023-03-02 18:35:27,976][1045499] Updated weights for policy 0, policy_version 3719 (0.0006) [2023-03-02 18:35:28,839][1045499] Updated weights for policy 0, policy_version 3729 (0.0007) [2023-03-02 18:35:29,313][1045180] Fps is (10 sec: 12185.7, 60 sec: 12305.1, 300 sec: 12145.8). Total num frames: 3823616. Throughput: 0: 12290.8. Samples: 2163221. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:35:29,314][1045180] Avg episode reward: [(0, '17.900')] [2023-03-02 18:35:29,683][1045499] Updated weights for policy 0, policy_version 3739 (0.0007) [2023-03-02 18:35:30,500][1045499] Updated weights for policy 0, policy_version 3749 (0.0006) [2023-03-02 18:35:31,301][1045499] Updated weights for policy 0, policy_version 3759 (0.0007) [2023-03-02 18:35:32,123][1045499] Updated weights for policy 0, policy_version 3769 (0.0007) [2023-03-02 18:35:32,944][1045499] Updated weights for policy 0, policy_version 3779 (0.0007) [2023-03-02 18:35:33,776][1045499] Updated weights for policy 0, policy_version 3789 (0.0007) [2023-03-02 18:35:34,313][1045180] Fps is (10 sec: 12287.8, 60 sec: 12322.1, 300 sec: 12155.2). Total num frames: 3886080. Throughput: 0: 12306.8. Samples: 2237568. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0) [2023-03-02 18:35:34,314][1045180] Avg episode reward: [(0, '24.087')] [2023-03-02 18:35:34,595][1045499] Updated weights for policy 0, policy_version 3799 (0.0007) [2023-03-02 18:35:35,453][1045499] Updated weights for policy 0, policy_version 3809 (0.0006) [2023-03-02 18:35:36,262][1045499] Updated weights for policy 0, policy_version 3819 (0.0007) [2023-03-02 18:35:37,081][1045499] Updated weights for policy 0, policy_version 3829 (0.0007) [2023-03-02 18:35:37,911][1045499] Updated weights for policy 0, policy_version 3839 (0.0007) [2023-03-02 18:35:38,564][1045448] KL-divergence is very high: 173.6769 [2023-03-02 18:35:38,745][1045499] Updated weights for policy 0, policy_version 3849 (0.0007) [2023-03-02 18:35:39,314][1045180] Fps is (10 sec: 12492.1, 60 sec: 12322.0, 300 sec: 12164.0). Total num frames: 3948544. Throughput: 0: 12318.6. Samples: 2312164. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:35:39,314][1045180] Avg episode reward: [(0, '16.004')] [2023-03-02 18:35:39,545][1045499] Updated weights for policy 0, policy_version 3859 (0.0007) [2023-03-02 18:35:40,396][1045499] Updated weights for policy 0, policy_version 3869 (0.0006) [2023-03-02 18:35:41,197][1045499] Updated weights for policy 0, policy_version 3879 (0.0006) [2023-03-02 18:35:42,048][1045499] Updated weights for policy 0, policy_version 3889 (0.0007) [2023-03-02 18:35:42,891][1045499] Updated weights for policy 0, policy_version 3899 (0.0007) [2023-03-02 18:35:43,718][1045499] Updated weights for policy 0, policy_version 3909 (0.0006) [2023-03-02 18:35:44,313][1045180] Fps is (10 sec: 12390.4, 60 sec: 12322.1, 300 sec: 12167.2). Total num frames: 4009984. Throughput: 0: 12306.0. Samples: 2348947. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:35:44,314][1045180] Avg episode reward: [(0, '25.979')] [2023-03-02 18:35:44,543][1045499] Updated weights for policy 0, policy_version 3919 (0.0007) [2023-03-02 18:35:45,376][1045499] Updated weights for policy 0, policy_version 3929 (0.0007) [2023-03-02 18:35:46,204][1045499] Updated weights for policy 0, policy_version 3939 (0.0006) [2023-03-02 18:35:47,032][1045499] Updated weights for policy 0, policy_version 3949 (0.0006) [2023-03-02 18:35:47,866][1045499] Updated weights for policy 0, policy_version 3959 (0.0007) [2023-03-02 18:35:48,691][1045499] Updated weights for policy 0, policy_version 3969 (0.0007) [2023-03-02 18:35:49,313][1045180] Fps is (10 sec: 12288.6, 60 sec: 12322.1, 300 sec: 12170.2). Total num frames: 4071424. Throughput: 0: 12310.4. Samples: 2423000. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:35:49,314][1045180] Avg episode reward: [(0, '31.309')] [2023-03-02 18:35:49,515][1045499] Updated weights for policy 0, policy_version 3979 (0.0007) [2023-03-02 18:35:50,353][1045499] Updated weights for policy 0, policy_version 3989 (0.0007) [2023-03-02 18:35:51,156][1045499] Updated weights for policy 0, policy_version 3999 (0.0007) [2023-03-02 18:35:51,971][1045499] Updated weights for policy 0, policy_version 4009 (0.0007) [2023-03-02 18:35:52,797][1045499] Updated weights for policy 0, policy_version 4019 (0.0006) [2023-03-02 18:35:53,527][1045448] KL-divergence is very high: 147.1295 [2023-03-02 18:35:53,637][1045499] Updated weights for policy 0, policy_version 4029 (0.0007) [2023-03-02 18:35:54,313][1045180] Fps is (10 sec: 12390.5, 60 sec: 12339.2, 300 sec: 12178.1). Total num frames: 4133888. Throughput: 0: 12337.3. Samples: 2497801. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:35:54,314][1045180] Avg episode reward: [(0, '33.488')] [2023-03-02 18:35:54,450][1045499] Updated weights for policy 0, policy_version 4039 (0.0006) [2023-03-02 18:35:55,250][1045499] Updated weights for policy 0, policy_version 4049 (0.0007) [2023-03-02 18:35:56,091][1045499] Updated weights for policy 0, policy_version 4059 (0.0006) [2023-03-02 18:35:56,910][1045499] Updated weights for policy 0, policy_version 4069 (0.0007) [2023-03-02 18:35:57,722][1045499] Updated weights for policy 0, policy_version 4079 (0.0007) [2023-03-02 18:35:58,565][1045499] Updated weights for policy 0, policy_version 4089 (0.0007) [2023-03-02 18:35:59,313][1045180] Fps is (10 sec: 12492.8, 60 sec: 12356.3, 300 sec: 12185.6). Total num frames: 4196352. Throughput: 0: 12346.7. Samples: 2535304. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:35:59,314][1045180] Avg episode reward: [(0, '18.036')] [2023-03-02 18:35:59,365][1045499] Updated weights for policy 0, policy_version 4099 (0.0007) [2023-03-02 18:36:00,192][1045499] Updated weights for policy 0, policy_version 4109 (0.0007) [2023-03-02 18:36:01,055][1045499] Updated weights for policy 0, policy_version 4119 (0.0007) [2023-03-02 18:36:01,888][1045499] Updated weights for policy 0, policy_version 4129 (0.0008) [2023-03-02 18:36:02,708][1045499] Updated weights for policy 0, policy_version 4139 (0.0006) [2023-03-02 18:36:03,538][1045499] Updated weights for policy 0, policy_version 4149 (0.0007) [2023-03-02 18:36:04,313][1045180] Fps is (10 sec: 12390.4, 60 sec: 12356.3, 300 sec: 12188.0). Total num frames: 4257792. Throughput: 0: 12356.3. Samples: 2609214. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:36:04,314][1045180] Avg episode reward: [(0, '17.536')] [2023-03-02 18:36:04,352][1045499] Updated weights for policy 0, policy_version 4159 (0.0007) [2023-03-02 18:36:05,180][1045499] Updated weights for policy 0, policy_version 4169 (0.0006) [2023-03-02 18:36:06,017][1045499] Updated weights for policy 0, policy_version 4179 (0.0006) [2023-03-02 18:36:06,842][1045499] Updated weights for policy 0, policy_version 4189 (0.0007) [2023-03-02 18:36:07,657][1045499] Updated weights for policy 0, policy_version 4199 (0.0007) [2023-03-02 18:36:08,505][1045499] Updated weights for policy 0, policy_version 4209 (0.0007) [2023-03-02 18:36:09,313][1045180] Fps is (10 sec: 12287.9, 60 sec: 12339.2, 300 sec: 12190.3). Total num frames: 4319232. Throughput: 0: 12367.5. Samples: 2683342. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:36:09,314][1045180] Avg episode reward: [(0, '12.739')] [2023-03-02 18:36:09,355][1045499] Updated weights for policy 0, policy_version 4219 (0.0006) [2023-03-02 18:36:10,169][1045499] Updated weights for policy 0, policy_version 4229 (0.0007) [2023-03-02 18:36:11,020][1045499] Updated weights for policy 0, policy_version 4239 (0.0006) [2023-03-02 18:36:11,825][1045499] Updated weights for policy 0, policy_version 4249 (0.0006) [2023-03-02 18:36:12,648][1045499] Updated weights for policy 0, policy_version 4259 (0.0006) [2023-03-02 18:36:13,487][1045499] Updated weights for policy 0, policy_version 4269 (0.0007) [2023-03-02 18:36:14,313][1045180] Fps is (10 sec: 12288.0, 60 sec: 12339.2, 300 sec: 12192.4). Total num frames: 4380672. Throughput: 0: 12385.3. Samples: 2720559. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:36:14,314][1045180] Avg episode reward: [(0, '13.930')] [2023-03-02 18:36:14,316][1045499] Updated weights for policy 0, policy_version 4279 (0.0007) [2023-03-02 18:36:15,132][1045499] Updated weights for policy 0, policy_version 4289 (0.0007) [2023-03-02 18:36:15,974][1045499] Updated weights for policy 0, policy_version 4299 (0.0008) [2023-03-02 18:36:16,799][1045499] Updated weights for policy 0, policy_version 4309 (0.0007) [2023-03-02 18:36:17,612][1045499] Updated weights for policy 0, policy_version 4319 (0.0007) [2023-03-02 18:36:18,437][1045499] Updated weights for policy 0, policy_version 4329 (0.0007) [2023-03-02 18:36:19,272][1045499] Updated weights for policy 0, policy_version 4339 (0.0007) [2023-03-02 18:36:19,313][1045180] Fps is (10 sec: 12390.5, 60 sec: 12356.3, 300 sec: 12199.0). Total num frames: 4443136. Throughput: 0: 12386.8. Samples: 2794972. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:36:19,314][1045180] Avg episode reward: [(0, '16.766')] [2023-03-02 18:36:19,324][1045448] Saving /home/qgallouedec/train_dir/default_experiment/checkpoint_p0/checkpoint_000004340_4444160.pth... [2023-03-02 18:36:19,356][1045448] Removing /home/qgallouedec/train_dir/default_experiment/checkpoint_p0/checkpoint_000001599_1637376.pth [2023-03-02 18:36:20,093][1045499] Updated weights for policy 0, policy_version 4349 (0.0006) [2023-03-02 18:36:20,916][1045499] Updated weights for policy 0, policy_version 4359 (0.0007) [2023-03-02 18:36:21,738][1045499] Updated weights for policy 0, policy_version 4369 (0.0007) [2023-03-02 18:36:22,564][1045499] Updated weights for policy 0, policy_version 4379 (0.0006) [2023-03-02 18:36:23,389][1045499] Updated weights for policy 0, policy_version 4389 (0.0007) [2023-03-02 18:36:24,205][1045499] Updated weights for policy 0, policy_version 4399 (0.0006) [2023-03-02 18:36:24,313][1045180] Fps is (10 sec: 12492.8, 60 sec: 12373.3, 300 sec: 12205.2). Total num frames: 4505600. Throughput: 0: 12385.2. Samples: 2869494. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:36:24,314][1045180] Avg episode reward: [(0, '13.664')] [2023-03-02 18:36:25,019][1045499] Updated weights for policy 0, policy_version 4409 (0.0006) [2023-03-02 18:36:25,879][1045499] Updated weights for policy 0, policy_version 4419 (0.0007) [2023-03-02 18:36:26,699][1045499] Updated weights for policy 0, policy_version 4429 (0.0006) [2023-03-02 18:36:27,519][1045499] Updated weights for policy 0, policy_version 4439 (0.0006) [2023-03-02 18:36:28,368][1045499] Updated weights for policy 0, policy_version 4449 (0.0008) [2023-03-02 18:36:29,208][1045499] Updated weights for policy 0, policy_version 4459 (0.0006) [2023-03-02 18:36:29,313][1045180] Fps is (10 sec: 12390.4, 60 sec: 12390.4, 300 sec: 12206.9). Total num frames: 4567040. Throughput: 0: 12386.7. Samples: 2906347. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:36:29,314][1045180] Avg episode reward: [(0, '18.686')] [2023-03-02 18:36:30,048][1045499] Updated weights for policy 0, policy_version 4469 (0.0008) [2023-03-02 18:36:30,880][1045499] Updated weights for policy 0, policy_version 4479 (0.0006) [2023-03-02 18:36:31,705][1045499] Updated weights for policy 0, policy_version 4489 (0.0007) [2023-03-02 18:36:32,541][1045499] Updated weights for policy 0, policy_version 4499 (0.0006) [2023-03-02 18:36:33,372][1045499] Updated weights for policy 0, policy_version 4509 (0.0006) [2023-03-02 18:36:34,184][1045499] Updated weights for policy 0, policy_version 4519 (0.0006) [2023-03-02 18:36:34,313][1045180] Fps is (10 sec: 12288.0, 60 sec: 12373.3, 300 sec: 12208.6). Total num frames: 4628480. Throughput: 0: 12381.2. Samples: 2980153. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:36:34,314][1045180] Avg episode reward: [(0, '15.073')] [2023-03-02 18:36:35,023][1045499] Updated weights for policy 0, policy_version 4529 (0.0007) [2023-03-02 18:36:35,833][1045499] Updated weights for policy 0, policy_version 4539 (0.0006) [2023-03-02 18:36:36,685][1045499] Updated weights for policy 0, policy_version 4549 (0.0007) [2023-03-02 18:36:37,513][1045499] Updated weights for policy 0, policy_version 4559 (0.0007) [2023-03-02 18:36:38,352][1045499] Updated weights for policy 0, policy_version 4569 (0.0006) [2023-03-02 18:36:39,180][1045499] Updated weights for policy 0, policy_version 4579 (0.0007) [2023-03-02 18:36:39,313][1045180] Fps is (10 sec: 12288.0, 60 sec: 12356.4, 300 sec: 12210.2). Total num frames: 4689920. Throughput: 0: 12358.7. Samples: 3053944. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:36:39,314][1045180] Avg episode reward: [(0, '13.465')] [2023-03-02 18:36:40,002][1045499] Updated weights for policy 0, policy_version 4589 (0.0007) [2023-03-02 18:36:40,824][1045499] Updated weights for policy 0, policy_version 4599 (0.0006) [2023-03-02 18:36:41,644][1045499] Updated weights for policy 0, policy_version 4609 (0.0008) [2023-03-02 18:36:42,453][1045499] Updated weights for policy 0, policy_version 4619 (0.0007) [2023-03-02 18:36:43,276][1045499] Updated weights for policy 0, policy_version 4629 (0.0007) [2023-03-02 18:36:44,097][1045499] Updated weights for policy 0, policy_version 4639 (0.0007) [2023-03-02 18:36:44,313][1045180] Fps is (10 sec: 12390.4, 60 sec: 12373.3, 300 sec: 12215.7). Total num frames: 4752384. Throughput: 0: 12361.6. Samples: 3091574. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:36:44,314][1045180] Avg episode reward: [(0, '9.541')] [2023-03-02 18:36:44,941][1045499] Updated weights for policy 0, policy_version 4649 (0.0007) [2023-03-02 18:36:45,799][1045499] Updated weights for policy 0, policy_version 4659 (0.0007) [2023-03-02 18:36:46,610][1045499] Updated weights for policy 0, policy_version 4669 (0.0006) [2023-03-02 18:36:47,448][1045499] Updated weights for policy 0, policy_version 4679 (0.0007) [2023-03-02 18:36:48,264][1045499] Updated weights for policy 0, policy_version 4689 (0.0006) [2023-03-02 18:36:49,105][1045499] Updated weights for policy 0, policy_version 4699 (0.0007) [2023-03-02 18:36:49,313][1045180] Fps is (10 sec: 12390.4, 60 sec: 12373.3, 300 sec: 12217.1). Total num frames: 4813824. Throughput: 0: 12366.7. Samples: 3165717. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:36:49,314][1045180] Avg episode reward: [(0, '9.880')] [2023-03-02 18:36:49,938][1045499] Updated weights for policy 0, policy_version 4709 (0.0006) [2023-03-02 18:36:50,753][1045499] Updated weights for policy 0, policy_version 4719 (0.0007) [2023-03-02 18:36:51,569][1045499] Updated weights for policy 0, policy_version 4729 (0.0006) [2023-03-02 18:36:52,406][1045499] Updated weights for policy 0, policy_version 4739 (0.0007) [2023-03-02 18:36:53,241][1045499] Updated weights for policy 0, policy_version 4749 (0.0007) [2023-03-02 18:36:54,093][1045499] Updated weights for policy 0, policy_version 4759 (0.0007) [2023-03-02 18:36:54,313][1045180] Fps is (10 sec: 12288.1, 60 sec: 12356.3, 300 sec: 12218.5). Total num frames: 4875264. Throughput: 0: 12359.1. Samples: 3239499. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:36:54,314][1045180] Avg episode reward: [(0, '8.232')] [2023-03-02 18:36:54,920][1045499] Updated weights for policy 0, policy_version 4769 (0.0007) [2023-03-02 18:36:55,726][1045499] Updated weights for policy 0, policy_version 4779 (0.0007) [2023-03-02 18:36:56,553][1045499] Updated weights for policy 0, policy_version 4789 (0.0007) [2023-03-02 18:36:57,386][1045499] Updated weights for policy 0, policy_version 4799 (0.0007) [2023-03-02 18:36:58,194][1045499] Updated weights for policy 0, policy_version 4809 (0.0007) [2023-03-02 18:36:58,988][1045499] Updated weights for policy 0, policy_version 4819 (0.0007) [2023-03-02 18:36:59,313][1045180] Fps is (10 sec: 12390.4, 60 sec: 12356.3, 300 sec: 12223.5). Total num frames: 4937728. Throughput: 0: 12360.8. Samples: 3276795. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0) [2023-03-02 18:36:59,314][1045180] Avg episode reward: [(0, '9.039')] [2023-03-02 18:36:59,822][1045499] Updated weights for policy 0, policy_version 4829 (0.0007) [2023-03-02 18:37:00,647][1045499] Updated weights for policy 0, policy_version 4839 (0.0007) [2023-03-02 18:37:01,486][1045499] Updated weights for policy 0, policy_version 4849 (0.0007) [2023-03-02 18:37:02,329][1045499] Updated weights for policy 0, policy_version 4859 (0.0006) [2023-03-02 18:37:03,150][1045499] Updated weights for policy 0, policy_version 4869 (0.0006) [2023-03-02 18:37:03,970][1045499] Updated weights for policy 0, policy_version 4879 (0.0007) [2023-03-02 18:37:04,313][1045180] Fps is (10 sec: 12492.7, 60 sec: 12373.3, 300 sec: 12228.4). Total num frames: 5000192. Throughput: 0: 12370.0. Samples: 3351623. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:37:04,314][1045180] Avg episode reward: [(0, '7.845')] [2023-03-02 18:37:04,798][1045499] Updated weights for policy 0, policy_version 4889 (0.0008) [2023-03-02 18:37:05,628][1045499] Updated weights for policy 0, policy_version 4899 (0.0007) [2023-03-02 18:37:06,449][1045499] Updated weights for policy 0, policy_version 4909 (0.0006) [2023-03-02 18:37:07,274][1045499] Updated weights for policy 0, policy_version 4919 (0.0006) [2023-03-02 18:37:08,110][1045499] Updated weights for policy 0, policy_version 4929 (0.0006) [2023-03-02 18:37:08,928][1045499] Updated weights for policy 0, policy_version 4939 (0.0007) [2023-03-02 18:37:09,313][1045180] Fps is (10 sec: 12390.3, 60 sec: 12373.3, 300 sec: 12229.5). Total num frames: 5061632. Throughput: 0: 12363.4. Samples: 3425849. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0) [2023-03-02 18:37:09,314][1045180] Avg episode reward: [(0, '7.902')] [2023-03-02 18:37:09,747][1045499] Updated weights for policy 0, policy_version 4949 (0.0006) [2023-03-02 18:37:10,555][1045499] Updated weights for policy 0, policy_version 4959 (0.0007) [2023-03-02 18:37:11,396][1045499] Updated weights for policy 0, policy_version 4969 (0.0007) [2023-03-02 18:37:12,209][1045499] Updated weights for policy 0, policy_version 4979 (0.0006) [2023-03-02 18:37:13,047][1045499] Updated weights for policy 0, policy_version 4989 (0.0006) [2023-03-02 18:37:13,851][1045499] Updated weights for policy 0, policy_version 4999 (0.0007) [2023-03-02 18:37:14,313][1045180] Fps is (10 sec: 12390.5, 60 sec: 12390.4, 300 sec: 12234.1). Total num frames: 5124096. Throughput: 0: 12377.8. Samples: 3463348. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:37:14,314][1045180] Avg episode reward: [(0, '6.443')] [2023-03-02 18:37:14,657][1045499] Updated weights for policy 0, policy_version 5009 (0.0006) [2023-03-02 18:37:15,501][1045499] Updated weights for policy 0, policy_version 5019 (0.0007) [2023-03-02 18:37:16,315][1045499] Updated weights for policy 0, policy_version 5029 (0.0006) [2023-03-02 18:37:17,133][1045499] Updated weights for policy 0, policy_version 5039 (0.0006) [2023-03-02 18:37:17,969][1045499] Updated weights for policy 0, policy_version 5049 (0.0006) [2023-03-02 18:37:18,784][1045499] Updated weights for policy 0, policy_version 5059 (0.0007) [2023-03-02 18:37:19,313][1045180] Fps is (10 sec: 12492.9, 60 sec: 12390.4, 300 sec: 12238.6). Total num frames: 5186560. Throughput: 0: 12402.5. Samples: 3538266. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0) [2023-03-02 18:37:19,314][1045180] Avg episode reward: [(0, '6.611')] [2023-03-02 18:37:19,424][1045448] KL-divergence is very high: 3397.6538 [2023-03-02 18:37:19,499][1045448] KL-divergence is very high: 173.7547 [2023-03-02 18:37:19,606][1045499] Updated weights for policy 0, policy_version 5069 (0.0007) [2023-03-02 18:37:20,425][1045499] Updated weights for policy 0, policy_version 5079 (0.0007) [2023-03-02 18:37:21,257][1045499] Updated weights for policy 0, policy_version 5089 (0.0006) [2023-03-02 18:37:22,065][1045499] Updated weights for policy 0, policy_version 5099 (0.0007) [2023-03-02 18:37:22,893][1045499] Updated weights for policy 0, policy_version 5109 (0.0006) [2023-03-02 18:37:23,733][1045499] Updated weights for policy 0, policy_version 5119 (0.0006) [2023-03-02 18:37:24,313][1045180] Fps is (10 sec: 12390.3, 60 sec: 12373.3, 300 sec: 12239.4). Total num frames: 5248000. Throughput: 0: 12406.3. Samples: 3612229. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0) [2023-03-02 18:37:24,314][1045180] Avg episode reward: [(0, '7.101')] [2023-03-02 18:37:24,560][1045499] Updated weights for policy 0, policy_version 5129 (0.0007) [2023-03-02 18:37:25,391][1045499] Updated weights for policy 0, policy_version 5139 (0.0007) [2023-03-02 18:37:26,239][1045499] Updated weights for policy 0, policy_version 5149 (0.0007) [2023-03-02 18:37:27,061][1045499] Updated weights for policy 0, policy_version 5159 (0.0007) [2023-03-02 18:37:27,904][1045499] Updated weights for policy 0, policy_version 5169 (0.0008) [2023-03-02 18:37:28,715][1045499] Updated weights for policy 0, policy_version 5179 (0.0006) [2023-03-02 18:37:29,313][1045180] Fps is (10 sec: 12390.4, 60 sec: 12390.4, 300 sec: 12347.0). Total num frames: 5310464. Throughput: 0: 12395.8. Samples: 3649383. Policy #0 lag: (min: 0.0, avg: 1.4, max: 3.0) [2023-03-02 18:37:29,314][1045180] Avg episode reward: [(0, '6.557')] [2023-03-02 18:37:29,539][1045499] Updated weights for policy 0, policy_version 5189 (0.0006) [2023-03-02 18:37:30,391][1045499] Updated weights for policy 0, policy_version 5199 (0.0006) [2023-03-02 18:37:31,217][1045499] Updated weights for policy 0, policy_version 5209 (0.0007) [2023-03-02 18:37:32,039][1045499] Updated weights for policy 0, policy_version 5219 (0.0006) [2023-03-02 18:37:32,870][1045499] Updated weights for policy 0, policy_version 5229 (0.0007) [2023-03-02 18:37:33,703][1045499] Updated weights for policy 0, policy_version 5239 (0.0007) [2023-03-02 18:37:34,313][1045180] Fps is (10 sec: 12390.4, 60 sec: 12390.4, 300 sec: 12347.0). Total num frames: 5371904. Throughput: 0: 12392.0. Samples: 3723358. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:37:34,314][1045180] Avg episode reward: [(0, '7.085')] [2023-03-02 18:37:34,508][1045499] Updated weights for policy 0, policy_version 5249 (0.0008) [2023-03-02 18:37:35,308][1045499] Updated weights for policy 0, policy_version 5259 (0.0006) [2023-03-02 18:37:36,134][1045499] Updated weights for policy 0, policy_version 5269 (0.0006) [2023-03-02 18:37:36,952][1045499] Updated weights for policy 0, policy_version 5279 (0.0007) [2023-03-02 18:37:37,713][1045448] KL-divergence is very high: 644.2097 [2023-03-02 18:37:37,795][1045499] Updated weights for policy 0, policy_version 5289 (0.0007) [2023-03-02 18:37:38,596][1045499] Updated weights for policy 0, policy_version 5299 (0.0007) [2023-03-02 18:37:39,313][1045180] Fps is (10 sec: 12390.3, 60 sec: 12407.4, 300 sec: 12350.5). Total num frames: 5434368. Throughput: 0: 12417.4. Samples: 3798283. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:37:39,314][1045180] Avg episode reward: [(0, '7.545')] [2023-03-02 18:37:39,439][1045499] Updated weights for policy 0, policy_version 5309 (0.0008) [2023-03-02 18:37:40,272][1045499] Updated weights for policy 0, policy_version 5319 (0.0007) [2023-03-02 18:37:41,120][1045499] Updated weights for policy 0, policy_version 5329 (0.0007) [2023-03-02 18:37:41,930][1045499] Updated weights for policy 0, policy_version 5339 (0.0007) [2023-03-02 18:37:42,769][1045499] Updated weights for policy 0, policy_version 5349 (0.0008) [2023-03-02 18:37:43,606][1045499] Updated weights for policy 0, policy_version 5359 (0.0007) [2023-03-02 18:37:44,313][1045180] Fps is (10 sec: 12390.6, 60 sec: 12390.4, 300 sec: 12350.5). Total num frames: 5495808. Throughput: 0: 12411.6. Samples: 3835315. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:37:44,314][1045180] Avg episode reward: [(0, '7.400')] [2023-03-02 18:37:44,431][1045499] Updated weights for policy 0, policy_version 5369 (0.0007) [2023-03-02 18:37:45,240][1045499] Updated weights for policy 0, policy_version 5379 (0.0006) [2023-03-02 18:37:46,062][1045499] Updated weights for policy 0, policy_version 5389 (0.0006) [2023-03-02 18:37:46,888][1045499] Updated weights for policy 0, policy_version 5399 (0.0007) [2023-03-02 18:37:47,714][1045499] Updated weights for policy 0, policy_version 5409 (0.0006) [2023-03-02 18:37:48,554][1045499] Updated weights for policy 0, policy_version 5419 (0.0006) [2023-03-02 18:37:49,313][1045180] Fps is (10 sec: 12288.1, 60 sec: 12390.4, 300 sec: 12350.5). Total num frames: 5557248. Throughput: 0: 12401.7. Samples: 3909699. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:37:49,314][1045180] Avg episode reward: [(0, '7.202')] [2023-03-02 18:37:49,413][1045499] Updated weights for policy 0, policy_version 5429 (0.0006) [2023-03-02 18:37:50,236][1045499] Updated weights for policy 0, policy_version 5439 (0.0007) [2023-03-02 18:37:51,066][1045499] Updated weights for policy 0, policy_version 5449 (0.0007) [2023-03-02 18:37:51,884][1045499] Updated weights for policy 0, policy_version 5459 (0.0006) [2023-03-02 18:37:52,705][1045499] Updated weights for policy 0, policy_version 5469 (0.0007) [2023-03-02 18:37:53,561][1045499] Updated weights for policy 0, policy_version 5479 (0.0007) [2023-03-02 18:37:54,313][1045180] Fps is (10 sec: 12390.3, 60 sec: 12407.5, 300 sec: 12354.0). Total num frames: 5619712. Throughput: 0: 12390.5. Samples: 3983418. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:37:54,314][1045180] Avg episode reward: [(0, '7.069')] [2023-03-02 18:37:54,377][1045499] Updated weights for policy 0, policy_version 5489 (0.0007) [2023-03-02 18:37:55,200][1045499] Updated weights for policy 0, policy_version 5499 (0.0007) [2023-03-02 18:37:56,023][1045499] Updated weights for policy 0, policy_version 5509 (0.0007) [2023-03-02 18:37:56,812][1045499] Updated weights for policy 0, policy_version 5519 (0.0007) [2023-03-02 18:37:57,639][1045499] Updated weights for policy 0, policy_version 5529 (0.0007) [2023-03-02 18:37:58,463][1045499] Updated weights for policy 0, policy_version 5539 (0.0006) [2023-03-02 18:37:59,291][1045499] Updated weights for policy 0, policy_version 5549 (0.0007) [2023-03-02 18:37:59,313][1045180] Fps is (10 sec: 12492.8, 60 sec: 12407.5, 300 sec: 12360.9). Total num frames: 5682176. Throughput: 0: 12396.1. Samples: 4021174. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:37:59,314][1045180] Avg episode reward: [(0, '7.178')] [2023-03-02 18:38:00,132][1045499] Updated weights for policy 0, policy_version 5559 (0.0007) [2023-03-02 18:38:00,985][1045499] Updated weights for policy 0, policy_version 5569 (0.0006) [2023-03-02 18:38:01,825][1045499] Updated weights for policy 0, policy_version 5579 (0.0006) [2023-03-02 18:38:02,645][1045499] Updated weights for policy 0, policy_version 5589 (0.0007) [2023-03-02 18:38:03,476][1045499] Updated weights for policy 0, policy_version 5599 (0.0006) [2023-03-02 18:38:04,313][1045180] Fps is (10 sec: 12287.9, 60 sec: 12373.3, 300 sec: 12357.4). Total num frames: 5742592. Throughput: 0: 12368.9. Samples: 4094868. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:38:04,314][1045180] Avg episode reward: [(0, '6.660')] [2023-03-02 18:38:04,316][1045499] Updated weights for policy 0, policy_version 5609 (0.0007) [2023-03-02 18:38:05,125][1045499] Updated weights for policy 0, policy_version 5619 (0.0007) [2023-03-02 18:38:05,980][1045499] Updated weights for policy 0, policy_version 5629 (0.0009) [2023-03-02 18:38:06,816][1045499] Updated weights for policy 0, policy_version 5639 (0.0006) [2023-03-02 18:38:07,629][1045499] Updated weights for policy 0, policy_version 5649 (0.0006) [2023-03-02 18:38:08,448][1045499] Updated weights for policy 0, policy_version 5659 (0.0007) [2023-03-02 18:38:09,282][1045499] Updated weights for policy 0, policy_version 5669 (0.0008) [2023-03-02 18:38:09,313][1045180] Fps is (10 sec: 12288.0, 60 sec: 12390.4, 300 sec: 12360.9). Total num frames: 5805056. Throughput: 0: 12370.9. Samples: 4168918. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0) [2023-03-02 18:38:09,314][1045180] Avg episode reward: [(0, '8.186')] [2023-03-02 18:38:10,105][1045499] Updated weights for policy 0, policy_version 5679 (0.0007) [2023-03-02 18:38:10,917][1045499] Updated weights for policy 0, policy_version 5689 (0.0006) [2023-03-02 18:38:11,736][1045499] Updated weights for policy 0, policy_version 5699 (0.0007) [2023-03-02 18:38:12,572][1045499] Updated weights for policy 0, policy_version 5709 (0.0006) [2023-03-02 18:38:13,402][1045499] Updated weights for policy 0, policy_version 5719 (0.0006) [2023-03-02 18:38:14,240][1045499] Updated weights for policy 0, policy_version 5729 (0.0006) [2023-03-02 18:38:14,313][1045180] Fps is (10 sec: 12390.4, 60 sec: 12373.3, 300 sec: 12360.9). Total num frames: 5866496. Throughput: 0: 12373.6. Samples: 4206195. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:38:14,314][1045180] Avg episode reward: [(0, '7.735')] [2023-03-02 18:38:15,074][1045499] Updated weights for policy 0, policy_version 5739 (0.0007) [2023-03-02 18:38:15,922][1045499] Updated weights for policy 0, policy_version 5749 (0.0006) [2023-03-02 18:38:16,749][1045499] Updated weights for policy 0, policy_version 5759 (0.0007) [2023-03-02 18:38:17,571][1045499] Updated weights for policy 0, policy_version 5769 (0.0006) [2023-03-02 18:38:18,389][1045499] Updated weights for policy 0, policy_version 5779 (0.0006) [2023-03-02 18:38:19,220][1045499] Updated weights for policy 0, policy_version 5789 (0.0006) [2023-03-02 18:38:19,313][1045180] Fps is (10 sec: 12390.4, 60 sec: 12373.3, 300 sec: 12360.9). Total num frames: 5928960. Throughput: 0: 12373.8. Samples: 4280180. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0) [2023-03-02 18:38:19,314][1045180] Avg episode reward: [(0, '6.788')] [2023-03-02 18:38:19,317][1045448] Saving /home/qgallouedec/train_dir/default_experiment/checkpoint_p0/checkpoint_000005790_5928960.pth... [2023-03-02 18:38:19,352][1045448] Removing /home/qgallouedec/train_dir/default_experiment/checkpoint_p0/checkpoint_000002894_2963456.pth [2023-03-02 18:38:20,052][1045499] Updated weights for policy 0, policy_version 5799 (0.0008) [2023-03-02 18:38:20,873][1045499] Updated weights for policy 0, policy_version 5809 (0.0007) [2023-03-02 18:38:21,725][1045499] Updated weights for policy 0, policy_version 5819 (0.0007) [2023-03-02 18:38:22,556][1045499] Updated weights for policy 0, policy_version 5829 (0.0006) [2023-03-02 18:38:23,373][1045499] Updated weights for policy 0, policy_version 5839 (0.0006) [2023-03-02 18:38:24,200][1045499] Updated weights for policy 0, policy_version 5849 (0.0007) [2023-03-02 18:38:24,313][1045180] Fps is (10 sec: 12390.5, 60 sec: 12373.3, 300 sec: 12360.9). Total num frames: 5990400. Throughput: 0: 12359.4. Samples: 4354456. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0) [2023-03-02 18:38:24,314][1045180] Avg episode reward: [(0, '6.880')] [2023-03-02 18:38:25,028][1045499] Updated weights for policy 0, policy_version 5859 (0.0006) [2023-03-02 18:38:25,846][1045499] Updated weights for policy 0, policy_version 5869 (0.0007) [2023-03-02 18:38:26,669][1045499] Updated weights for policy 0, policy_version 5879 (0.0007) [2023-03-02 18:38:27,482][1045499] Updated weights for policy 0, policy_version 5889 (0.0006) [2023-03-02 18:38:28,320][1045499] Updated weights for policy 0, policy_version 5899 (0.0007) [2023-03-02 18:38:29,157][1045499] Updated weights for policy 0, policy_version 5909 (0.0006) [2023-03-02 18:38:29,313][1045180] Fps is (10 sec: 12390.5, 60 sec: 12373.3, 300 sec: 12364.4). Total num frames: 6052864. Throughput: 0: 12366.8. Samples: 4391822. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:38:29,314][1045180] Avg episode reward: [(0, '6.661')] [2023-03-02 18:38:29,977][1045499] Updated weights for policy 0, policy_version 5919 (0.0007) [2023-03-02 18:38:30,782][1045499] Updated weights for policy 0, policy_version 5929 (0.0007) [2023-03-02 18:38:31,613][1045499] Updated weights for policy 0, policy_version 5939 (0.0007) [2023-03-02 18:38:32,448][1045499] Updated weights for policy 0, policy_version 5949 (0.0007) [2023-03-02 18:38:33,271][1045499] Updated weights for policy 0, policy_version 5959 (0.0008) [2023-03-02 18:38:34,092][1045499] Updated weights for policy 0, policy_version 5969 (0.0007) [2023-03-02 18:38:34,313][1045180] Fps is (10 sec: 12390.3, 60 sec: 12373.3, 300 sec: 12364.4). Total num frames: 6114304. Throughput: 0: 12360.3. Samples: 4465912. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:38:34,314][1045180] Avg episode reward: [(0, '7.973')] [2023-03-02 18:38:34,923][1045499] Updated weights for policy 0, policy_version 5979 (0.0007) [2023-03-02 18:38:35,763][1045499] Updated weights for policy 0, policy_version 5989 (0.0006) [2023-03-02 18:38:36,624][1045499] Updated weights for policy 0, policy_version 5999 (0.0006) [2023-03-02 18:38:37,431][1045499] Updated weights for policy 0, policy_version 6009 (0.0006) [2023-03-02 18:38:38,258][1045499] Updated weights for policy 0, policy_version 6019 (0.0007) [2023-03-02 18:38:39,111][1045499] Updated weights for policy 0, policy_version 6029 (0.0006) [2023-03-02 18:38:39,313][1045180] Fps is (10 sec: 12287.9, 60 sec: 12356.3, 300 sec: 12357.4). Total num frames: 6175744. Throughput: 0: 12363.4. Samples: 4539770. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:38:39,314][1045180] Avg episode reward: [(0, '7.047')] [2023-03-02 18:38:39,958][1045499] Updated weights for policy 0, policy_version 6039 (0.0007) [2023-03-02 18:38:40,786][1045499] Updated weights for policy 0, policy_version 6049 (0.0007) [2023-03-02 18:38:41,593][1045499] Updated weights for policy 0, policy_version 6059 (0.0007) [2023-03-02 18:38:42,421][1045499] Updated weights for policy 0, policy_version 6069 (0.0006) [2023-03-02 18:38:43,254][1045499] Updated weights for policy 0, policy_version 6079 (0.0007) [2023-03-02 18:38:44,101][1045499] Updated weights for policy 0, policy_version 6089 (0.0007) [2023-03-02 18:38:44,313][1045180] Fps is (10 sec: 12288.0, 60 sec: 12356.2, 300 sec: 12357.4). Total num frames: 6237184. Throughput: 0: 12348.1. Samples: 4576838. Policy #0 lag: (min: 0.0, avg: 1.4, max: 3.0) [2023-03-02 18:38:44,314][1045180] Avg episode reward: [(0, '7.718')] [2023-03-02 18:38:44,942][1045499] Updated weights for policy 0, policy_version 6099 (0.0007) [2023-03-02 18:38:45,769][1045499] Updated weights for policy 0, policy_version 6109 (0.0007) [2023-03-02 18:38:46,595][1045499] Updated weights for policy 0, policy_version 6119 (0.0007) [2023-03-02 18:38:47,437][1045499] Updated weights for policy 0, policy_version 6129 (0.0007) [2023-03-02 18:38:48,268][1045499] Updated weights for policy 0, policy_version 6139 (0.0006) [2023-03-02 18:38:49,066][1045499] Updated weights for policy 0, policy_version 6149 (0.0006) [2023-03-02 18:38:49,313][1045180] Fps is (10 sec: 12287.9, 60 sec: 12356.3, 300 sec: 12357.4). Total num frames: 6298624. Throughput: 0: 12348.9. Samples: 4650568. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:38:49,314][1045180] Avg episode reward: [(0, '7.382')] [2023-03-02 18:38:49,922][1045499] Updated weights for policy 0, policy_version 6159 (0.0007) [2023-03-02 18:38:50,746][1045499] Updated weights for policy 0, policy_version 6169 (0.0006) [2023-03-02 18:38:51,578][1045499] Updated weights for policy 0, policy_version 6179 (0.0007) [2023-03-02 18:38:52,424][1045499] Updated weights for policy 0, policy_version 6189 (0.0007) [2023-03-02 18:38:53,272][1045499] Updated weights for policy 0, policy_version 6199 (0.0008) [2023-03-02 18:38:54,110][1045499] Updated weights for policy 0, policy_version 6209 (0.0006) [2023-03-02 18:38:54,313][1045180] Fps is (10 sec: 12288.1, 60 sec: 12339.2, 300 sec: 12354.0). Total num frames: 6360064. Throughput: 0: 12337.4. Samples: 4724101. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:38:54,314][1045180] Avg episode reward: [(0, '7.240')] [2023-03-02 18:38:54,924][1045499] Updated weights for policy 0, policy_version 6219 (0.0006) [2023-03-02 18:38:55,755][1045499] Updated weights for policy 0, policy_version 6229 (0.0006) [2023-03-02 18:38:56,587][1045499] Updated weights for policy 0, policy_version 6239 (0.0006) [2023-03-02 18:38:57,413][1045499] Updated weights for policy 0, policy_version 6249 (0.0007) [2023-03-02 18:38:58,241][1045499] Updated weights for policy 0, policy_version 6259 (0.0006) [2023-03-02 18:38:59,044][1045499] Updated weights for policy 0, policy_version 6269 (0.0006) [2023-03-02 18:38:59,313][1045180] Fps is (10 sec: 12390.4, 60 sec: 12339.2, 300 sec: 12354.0). Total num frames: 6422528. Throughput: 0: 12333.6. Samples: 4761209. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:38:59,314][1045180] Avg episode reward: [(0, '7.759')] [2023-03-02 18:38:59,868][1045499] Updated weights for policy 0, policy_version 6279 (0.0007) [2023-03-02 18:39:00,674][1045499] Updated weights for policy 0, policy_version 6289 (0.0007) [2023-03-02 18:39:01,510][1045499] Updated weights for policy 0, policy_version 6299 (0.0007) [2023-03-02 18:39:02,336][1045499] Updated weights for policy 0, policy_version 6309 (0.0007) [2023-03-02 18:39:03,172][1045499] Updated weights for policy 0, policy_version 6319 (0.0008) [2023-03-02 18:39:03,983][1045499] Updated weights for policy 0, policy_version 6329 (0.0007) [2023-03-02 18:39:04,313][1045180] Fps is (10 sec: 12492.8, 60 sec: 12373.4, 300 sec: 12360.9). Total num frames: 6484992. Throughput: 0: 12354.6. Samples: 4836137. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:39:04,314][1045180] Avg episode reward: [(0, '6.903')] [2023-03-02 18:39:04,803][1045499] Updated weights for policy 0, policy_version 6339 (0.0006) [2023-03-02 18:39:05,616][1045499] Updated weights for policy 0, policy_version 6349 (0.0007) [2023-03-02 18:39:06,437][1045499] Updated weights for policy 0, policy_version 6359 (0.0006) [2023-03-02 18:39:07,280][1045499] Updated weights for policy 0, policy_version 6369 (0.0007) [2023-03-02 18:39:08,092][1045499] Updated weights for policy 0, policy_version 6379 (0.0007) [2023-03-02 18:39:08,918][1045499] Updated weights for policy 0, policy_version 6389 (0.0007) [2023-03-02 18:39:09,313][1045180] Fps is (10 sec: 12390.4, 60 sec: 12356.2, 300 sec: 12357.4). Total num frames: 6546432. Throughput: 0: 12360.0. Samples: 4910657. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:39:09,314][1045180] Avg episode reward: [(0, '7.851')] [2023-03-02 18:39:09,729][1045499] Updated weights for policy 0, policy_version 6399 (0.0007) [2023-03-02 18:39:10,591][1045499] Updated weights for policy 0, policy_version 6409 (0.0007) [2023-03-02 18:39:11,417][1045499] Updated weights for policy 0, policy_version 6419 (0.0007) [2023-03-02 18:39:12,256][1045499] Updated weights for policy 0, policy_version 6429 (0.0006) [2023-03-02 18:39:13,106][1045499] Updated weights for policy 0, policy_version 6439 (0.0007) [2023-03-02 18:39:13,925][1045499] Updated weights for policy 0, policy_version 6449 (0.0006) [2023-03-02 18:39:14,313][1045180] Fps is (10 sec: 12287.9, 60 sec: 12356.3, 300 sec: 12357.4). Total num frames: 6607872. Throughput: 0: 12350.9. Samples: 4947614. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0) [2023-03-02 18:39:14,314][1045180] Avg episode reward: [(0, '7.440')] [2023-03-02 18:39:14,736][1045499] Updated weights for policy 0, policy_version 6459 (0.0007) [2023-03-02 18:39:15,563][1045499] Updated weights for policy 0, policy_version 6469 (0.0006) [2023-03-02 18:39:16,386][1045499] Updated weights for policy 0, policy_version 6479 (0.0006) [2023-03-02 18:39:17,213][1045499] Updated weights for policy 0, policy_version 6489 (0.0006) [2023-03-02 18:39:18,031][1045499] Updated weights for policy 0, policy_version 6499 (0.0006) [2023-03-02 18:39:18,843][1045499] Updated weights for policy 0, policy_version 6509 (0.0006) [2023-03-02 18:39:19,313][1045180] Fps is (10 sec: 12390.5, 60 sec: 12356.3, 300 sec: 12360.9). Total num frames: 6670336. Throughput: 0: 12355.5. Samples: 5021908. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:39:19,314][1045180] Avg episode reward: [(0, '7.807')] [2023-03-02 18:39:19,658][1045499] Updated weights for policy 0, policy_version 6519 (0.0007) [2023-03-02 18:39:20,481][1045499] Updated weights for policy 0, policy_version 6529 (0.0006) [2023-03-02 18:39:21,332][1045499] Updated weights for policy 0, policy_version 6539 (0.0006) [2023-03-02 18:39:22,144][1045499] Updated weights for policy 0, policy_version 6549 (0.0007) [2023-03-02 18:39:22,945][1045499] Updated weights for policy 0, policy_version 6559 (0.0006) [2023-03-02 18:39:23,783][1045499] Updated weights for policy 0, policy_version 6569 (0.0006) [2023-03-02 18:39:24,313][1045180] Fps is (10 sec: 12492.8, 60 sec: 12373.3, 300 sec: 12364.4). Total num frames: 6732800. Throughput: 0: 12382.7. Samples: 5096993. Policy #0 lag: (min: 0.0, avg: 1.4, max: 3.0) [2023-03-02 18:39:24,314][1045180] Avg episode reward: [(0, '8.402')] [2023-03-02 18:39:24,581][1045499] Updated weights for policy 0, policy_version 6579 (0.0007) [2023-03-02 18:39:25,420][1045499] Updated weights for policy 0, policy_version 6589 (0.0007) [2023-03-02 18:39:26,288][1045499] Updated weights for policy 0, policy_version 6599 (0.0007) [2023-03-02 18:39:27,091][1045499] Updated weights for policy 0, policy_version 6609 (0.0007) [2023-03-02 18:39:27,927][1045499] Updated weights for policy 0, policy_version 6619 (0.0007) [2023-03-02 18:39:28,748][1045499] Updated weights for policy 0, policy_version 6629 (0.0007) [2023-03-02 18:39:29,313][1045180] Fps is (10 sec: 12390.3, 60 sec: 12356.2, 300 sec: 12364.4). Total num frames: 6794240. Throughput: 0: 12375.7. Samples: 5133742. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:39:29,314][1045180] Avg episode reward: [(0, '8.741')] [2023-03-02 18:39:29,604][1045499] Updated weights for policy 0, policy_version 6639 (0.0006) [2023-03-02 18:39:30,422][1045499] Updated weights for policy 0, policy_version 6649 (0.0007) [2023-03-02 18:39:31,236][1045499] Updated weights for policy 0, policy_version 6659 (0.0007) [2023-03-02 18:39:32,089][1045499] Updated weights for policy 0, policy_version 6669 (0.0007) [2023-03-02 18:39:32,908][1045499] Updated weights for policy 0, policy_version 6679 (0.0007) [2023-03-02 18:39:33,712][1045499] Updated weights for policy 0, policy_version 6689 (0.0006) [2023-03-02 18:39:34,313][1045180] Fps is (10 sec: 12288.1, 60 sec: 12356.3, 300 sec: 12360.9). Total num frames: 6855680. Throughput: 0: 12383.7. Samples: 5207834. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:39:34,314][1045180] Avg episode reward: [(0, '8.348')] [2023-03-02 18:39:34,554][1045499] Updated weights for policy 0, policy_version 6699 (0.0006) [2023-03-02 18:39:35,354][1045499] Updated weights for policy 0, policy_version 6709 (0.0006) [2023-03-02 18:39:36,206][1045499] Updated weights for policy 0, policy_version 6719 (0.0007) [2023-03-02 18:39:37,052][1045499] Updated weights for policy 0, policy_version 6729 (0.0007) [2023-03-02 18:39:37,883][1045499] Updated weights for policy 0, policy_version 6739 (0.0006) [2023-03-02 18:39:38,722][1045499] Updated weights for policy 0, policy_version 6749 (0.0007) [2023-03-02 18:39:39,313][1045180] Fps is (10 sec: 12288.0, 60 sec: 12356.3, 300 sec: 12360.9). Total num frames: 6917120. Throughput: 0: 12386.1. Samples: 5281475. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:39:39,314][1045180] Avg episode reward: [(0, '7.601')] [2023-03-02 18:39:39,573][1045499] Updated weights for policy 0, policy_version 6759 (0.0006) [2023-03-02 18:39:40,409][1045499] Updated weights for policy 0, policy_version 6769 (0.0008) [2023-03-02 18:39:41,243][1045499] Updated weights for policy 0, policy_version 6779 (0.0007) [2023-03-02 18:39:42,062][1045499] Updated weights for policy 0, policy_version 6789 (0.0007) [2023-03-02 18:39:42,895][1045499] Updated weights for policy 0, policy_version 6799 (0.0006) [2023-03-02 18:39:43,724][1045499] Updated weights for policy 0, policy_version 6809 (0.0006) [2023-03-02 18:39:44,313][1045180] Fps is (10 sec: 12390.4, 60 sec: 12373.3, 300 sec: 12364.4). Total num frames: 6979584. Throughput: 0: 12380.0. Samples: 5318310. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:39:44,314][1045180] Avg episode reward: [(0, '8.140')] [2023-03-02 18:39:44,572][1045499] Updated weights for policy 0, policy_version 6819 (0.0007) [2023-03-02 18:39:45,392][1045499] Updated weights for policy 0, policy_version 6829 (0.0006) [2023-03-02 18:39:46,206][1045499] Updated weights for policy 0, policy_version 6839 (0.0007) [2023-03-02 18:39:47,064][1045499] Updated weights for policy 0, policy_version 6849 (0.0006) [2023-03-02 18:39:47,859][1045499] Updated weights for policy 0, policy_version 6859 (0.0006) [2023-03-02 18:39:48,718][1045499] Updated weights for policy 0, policy_version 6869 (0.0006) [2023-03-02 18:39:49,313][1045180] Fps is (10 sec: 12390.5, 60 sec: 12373.3, 300 sec: 12364.4). Total num frames: 7041024. Throughput: 0: 12366.6. Samples: 5392634. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:39:49,314][1045180] Avg episode reward: [(0, '8.316')] [2023-03-02 18:39:49,543][1045499] Updated weights for policy 0, policy_version 6879 (0.0006) [2023-03-02 18:39:50,350][1045499] Updated weights for policy 0, policy_version 6889 (0.0006) [2023-03-02 18:39:51,182][1045499] Updated weights for policy 0, policy_version 6899 (0.0007) [2023-03-02 18:39:52,016][1045499] Updated weights for policy 0, policy_version 6909 (0.0008) [2023-03-02 18:39:52,835][1045499] Updated weights for policy 0, policy_version 6919 (0.0007) [2023-03-02 18:39:53,647][1045499] Updated weights for policy 0, policy_version 6929 (0.0007) [2023-03-02 18:39:54,313][1045180] Fps is (10 sec: 12390.5, 60 sec: 12390.4, 300 sec: 12367.8). Total num frames: 7103488. Throughput: 0: 12359.8. Samples: 5466845. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:39:54,313][1045180] Avg episode reward: [(0, '8.191')] [2023-03-02 18:39:54,489][1045499] Updated weights for policy 0, policy_version 6939 (0.0006) [2023-03-02 18:39:55,310][1045499] Updated weights for policy 0, policy_version 6949 (0.0007) [2023-03-02 18:39:56,148][1045499] Updated weights for policy 0, policy_version 6959 (0.0007) [2023-03-02 18:39:57,002][1045499] Updated weights for policy 0, policy_version 6969 (0.0007) [2023-03-02 18:39:57,819][1045499] Updated weights for policy 0, policy_version 6979 (0.0007) [2023-03-02 18:39:58,629][1045499] Updated weights for policy 0, policy_version 6989 (0.0007) [2023-03-02 18:39:59,313][1045180] Fps is (10 sec: 12390.3, 60 sec: 12373.3, 300 sec: 12367.8). Total num frames: 7164928. Throughput: 0: 12353.9. Samples: 5503541. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:39:59,314][1045180] Avg episode reward: [(0, '7.433')] [2023-03-02 18:39:59,444][1045499] Updated weights for policy 0, policy_version 6999 (0.0007) [2023-03-02 18:40:00,278][1045499] Updated weights for policy 0, policy_version 7009 (0.0007) [2023-03-02 18:40:01,101][1045499] Updated weights for policy 0, policy_version 7019 (0.0006) [2023-03-02 18:40:01,945][1045499] Updated weights for policy 0, policy_version 7029 (0.0007) [2023-03-02 18:40:02,761][1045499] Updated weights for policy 0, policy_version 7039 (0.0006) [2023-03-02 18:40:03,628][1045499] Updated weights for policy 0, policy_version 7049 (0.0007) [2023-03-02 18:40:04,313][1045180] Fps is (10 sec: 12287.9, 60 sec: 12356.3, 300 sec: 12364.4). Total num frames: 7226368. Throughput: 0: 12357.6. Samples: 5578000. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:40:04,314][1045180] Avg episode reward: [(0, '19.562')] [2023-03-02 18:40:04,460][1045499] Updated weights for policy 0, policy_version 7059 (0.0008) [2023-03-02 18:40:05,296][1045499] Updated weights for policy 0, policy_version 7069 (0.0006) [2023-03-02 18:40:06,124][1045499] Updated weights for policy 0, policy_version 7079 (0.0007) [2023-03-02 18:40:06,958][1045499] Updated weights for policy 0, policy_version 7089 (0.0007) [2023-03-02 18:40:07,821][1045499] Updated weights for policy 0, policy_version 7099 (0.0008) [2023-03-02 18:40:08,635][1045499] Updated weights for policy 0, policy_version 7109 (0.0007) [2023-03-02 18:40:09,313][1045180] Fps is (10 sec: 12288.0, 60 sec: 12356.3, 300 sec: 12364.4). Total num frames: 7287808. Throughput: 0: 12328.9. Samples: 5651795. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:40:09,314][1045180] Avg episode reward: [(0, '7.684')] [2023-03-02 18:40:09,438][1045499] Updated weights for policy 0, policy_version 7119 (0.0006) [2023-03-02 18:40:10,261][1045499] Updated weights for policy 0, policy_version 7129 (0.0006) [2023-03-02 18:40:11,074][1045499] Updated weights for policy 0, policy_version 7139 (0.0007) [2023-03-02 18:40:11,893][1045499] Updated weights for policy 0, policy_version 7149 (0.0007) [2023-03-02 18:40:12,712][1045499] Updated weights for policy 0, policy_version 7159 (0.0007) [2023-03-02 18:40:13,529][1045499] Updated weights for policy 0, policy_version 7169 (0.0006) [2023-03-02 18:40:14,313][1045180] Fps is (10 sec: 12390.3, 60 sec: 12373.3, 300 sec: 12367.8). Total num frames: 7350272. Throughput: 0: 12348.8. Samples: 5689438. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:40:14,314][1045180] Avg episode reward: [(0, '7.718')] [2023-03-02 18:40:14,365][1045499] Updated weights for policy 0, policy_version 7179 (0.0006) [2023-03-02 18:40:15,197][1045499] Updated weights for policy 0, policy_version 7189 (0.0006) [2023-03-02 18:40:16,018][1045499] Updated weights for policy 0, policy_version 7199 (0.0006) [2023-03-02 18:40:16,851][1045499] Updated weights for policy 0, policy_version 7209 (0.0006) [2023-03-02 18:40:17,665][1045499] Updated weights for policy 0, policy_version 7219 (0.0006) [2023-03-02 18:40:18,520][1045499] Updated weights for policy 0, policy_version 7229 (0.0007) [2023-03-02 18:40:19,313][1045180] Fps is (10 sec: 12390.5, 60 sec: 12356.3, 300 sec: 12367.8). Total num frames: 7411712. Throughput: 0: 12348.9. Samples: 5763534. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:40:19,314][1045180] Avg episode reward: [(0, '6.800')] [2023-03-02 18:40:19,317][1045448] Saving /home/qgallouedec/train_dir/default_experiment/checkpoint_p0/checkpoint_000007238_7411712.pth... [2023-03-02 18:40:19,351][1045448] Removing /home/qgallouedec/train_dir/default_experiment/checkpoint_p0/checkpoint_000004340_4444160.pth [2023-03-02 18:40:19,376][1045499] Updated weights for policy 0, policy_version 7239 (0.0007) [2023-03-02 18:40:20,176][1045499] Updated weights for policy 0, policy_version 7249 (0.0007) [2023-03-02 18:40:21,011][1045499] Updated weights for policy 0, policy_version 7259 (0.0006) [2023-03-02 18:40:21,824][1045499] Updated weights for policy 0, policy_version 7269 (0.0007) [2023-03-02 18:40:22,637][1045499] Updated weights for policy 0, policy_version 7279 (0.0006) [2023-03-02 18:40:23,475][1045499] Updated weights for policy 0, policy_version 7289 (0.0007) [2023-03-02 18:40:24,280][1045499] Updated weights for policy 0, policy_version 7299 (0.0006) [2023-03-02 18:40:24,313][1045180] Fps is (10 sec: 12390.3, 60 sec: 12356.3, 300 sec: 12374.8). Total num frames: 7474176. Throughput: 0: 12367.8. Samples: 5838027. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:40:24,314][1045180] Avg episode reward: [(0, '7.901')] [2023-03-02 18:40:25,112][1045499] Updated weights for policy 0, policy_version 7309 (0.0007) [2023-03-02 18:40:25,927][1045499] Updated weights for policy 0, policy_version 7319 (0.0006) [2023-03-02 18:40:26,750][1045499] Updated weights for policy 0, policy_version 7329 (0.0007) [2023-03-02 18:40:27,579][1045499] Updated weights for policy 0, policy_version 7339 (0.0007) [2023-03-02 18:40:28,428][1045499] Updated weights for policy 0, policy_version 7349 (0.0006) [2023-03-02 18:40:29,234][1045499] Updated weights for policy 0, policy_version 7359 (0.0008) [2023-03-02 18:40:29,313][1045180] Fps is (10 sec: 12492.8, 60 sec: 12373.3, 300 sec: 12374.8). Total num frames: 7536640. Throughput: 0: 12377.7. Samples: 5875306. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:40:29,314][1045180] Avg episode reward: [(0, '7.309')] [2023-03-02 18:40:30,051][1045499] Updated weights for policy 0, policy_version 7369 (0.0006) [2023-03-02 18:40:30,896][1045499] Updated weights for policy 0, policy_version 7379 (0.0006) [2023-03-02 18:40:31,749][1045499] Updated weights for policy 0, policy_version 7389 (0.0006) [2023-03-02 18:40:32,611][1045499] Updated weights for policy 0, policy_version 7399 (0.0007) [2023-03-02 18:40:33,443][1045499] Updated weights for policy 0, policy_version 7409 (0.0006) [2023-03-02 18:40:34,278][1045499] Updated weights for policy 0, policy_version 7419 (0.0006) [2023-03-02 18:40:34,313][1045180] Fps is (10 sec: 12288.1, 60 sec: 12356.3, 300 sec: 12367.9). Total num frames: 7597056. Throughput: 0: 12356.7. Samples: 5948685. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:40:34,314][1045180] Avg episode reward: [(0, '9.203')] [2023-03-02 18:40:35,131][1045499] Updated weights for policy 0, policy_version 7429 (0.0007) [2023-03-02 18:40:35,950][1045499] Updated weights for policy 0, policy_version 7439 (0.0007) [2023-03-02 18:40:36,799][1045499] Updated weights for policy 0, policy_version 7449 (0.0007) [2023-03-02 18:40:37,620][1045499] Updated weights for policy 0, policy_version 7459 (0.0007) [2023-03-02 18:40:38,458][1045499] Updated weights for policy 0, policy_version 7469 (0.0007) [2023-03-02 18:40:39,280][1045499] Updated weights for policy 0, policy_version 7479 (0.0006) [2023-03-02 18:40:39,313][1045180] Fps is (10 sec: 12185.5, 60 sec: 12356.3, 300 sec: 12367.8). Total num frames: 7658496. Throughput: 0: 12350.2. Samples: 6022608. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:40:39,314][1045180] Avg episode reward: [(0, '7.892')] [2023-03-02 18:40:40,126][1045499] Updated weights for policy 0, policy_version 7489 (0.0006) [2023-03-02 18:40:40,956][1045499] Updated weights for policy 0, policy_version 7499 (0.0007) [2023-03-02 18:40:41,769][1045499] Updated weights for policy 0, policy_version 7509 (0.0006) [2023-03-02 18:40:42,603][1045499] Updated weights for policy 0, policy_version 7519 (0.0008) [2023-03-02 18:40:43,432][1045499] Updated weights for policy 0, policy_version 7529 (0.0007) [2023-03-02 18:40:44,260][1045499] Updated weights for policy 0, policy_version 7539 (0.0006) [2023-03-02 18:40:44,313][1045180] Fps is (10 sec: 12288.0, 60 sec: 12339.2, 300 sec: 12367.8). Total num frames: 7719936. Throughput: 0: 12347.9. Samples: 6059196. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:40:44,314][1045180] Avg episode reward: [(0, '7.893')] [2023-03-02 18:40:45,078][1045499] Updated weights for policy 0, policy_version 7549 (0.0006) [2023-03-02 18:40:45,912][1045499] Updated weights for policy 0, policy_version 7559 (0.0005) [2023-03-02 18:40:46,742][1045499] Updated weights for policy 0, policy_version 7569 (0.0006) [2023-03-02 18:40:47,555][1045499] Updated weights for policy 0, policy_version 7579 (0.0007) [2023-03-02 18:40:48,386][1045499] Updated weights for policy 0, policy_version 7589 (0.0007) [2023-03-02 18:40:49,204][1045499] Updated weights for policy 0, policy_version 7599 (0.0006) [2023-03-02 18:40:49,313][1045180] Fps is (10 sec: 12390.4, 60 sec: 12356.2, 300 sec: 12367.8). Total num frames: 7782400. Throughput: 0: 12349.7. Samples: 6133737. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-02 18:40:49,314][1045180] Avg episode reward: [(0, '7.195')] [2023-03-02 18:40:50,046][1045499] Updated weights for policy 0, policy_version 7609 (0.0007) [2023-03-02 18:40:50,908][1045499] Updated weights for policy 0, policy_version 7619 (0.0006) [2023-03-02 18:40:51,739][1045499] Updated weights for policy 0, policy_version 7629 (0.0006) [2023-03-02 18:40:52,549][1045499] Updated weights for policy 0, policy_version 7639 (0.0007) [2023-03-02 18:40:53,390][1045499] Updated weights for policy 0, policy_version 7649 (0.0006) [2023-03-02 18:40:54,226][1045499] Updated weights for policy 0, policy_version 7659 (0.0006) [2023-03-02 18:40:54,313][1045180] Fps is (10 sec: 12287.7, 60 sec: 12322.0, 300 sec: 12360.9). Total num frames: 7842816. Throughput: 0: 12345.7. Samples: 6207353. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:40:54,314][1045180] Avg episode reward: [(0, '8.553')] [2023-03-02 18:40:55,052][1045499] Updated weights for policy 0, policy_version 7669 (0.0006) [2023-03-02 18:40:55,893][1045499] Updated weights for policy 0, policy_version 7679 (0.0007) [2023-03-02 18:40:56,714][1045499] Updated weights for policy 0, policy_version 7689 (0.0006) [2023-03-02 18:40:57,575][1045499] Updated weights for policy 0, policy_version 7699 (0.0007) [2023-03-02 18:40:58,393][1045499] Updated weights for policy 0, policy_version 7709 (0.0006) [2023-03-02 18:40:59,224][1045499] Updated weights for policy 0, policy_version 7719 (0.0006) [2023-03-02 18:40:59,313][1045180] Fps is (10 sec: 12185.6, 60 sec: 12322.1, 300 sec: 12360.9). Total num frames: 7904256. Throughput: 0: 12326.2. Samples: 6244117. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-02 18:40:59,314][1045180] Avg episode reward: [(0, '8.064')] [2023-03-02 18:40:59,383][1045180] Keyboard interrupt detected in the event loop EvtLoop [Runner_EvtLoop, process=main process 1045180], exiting... [2023-03-02 18:40:59,384][1045601] Stopping RolloutWorker_w10... [2023-03-02 18:40:59,384][1045933] Stopping RolloutWorker_w27... [2023-03-02 18:40:59,384][1045666] Stopping RolloutWorker_w8... [2023-03-02 18:40:59,384][1045932] Stopping RolloutWorker_w28... [2023-03-02 18:40:59,384][1045834] Stopping RolloutWorker_w22... [2023-03-02 18:40:59,384][1045669] Stopping RolloutWorker_w17... [2023-03-02 18:40:59,384][1045601] Loop rollout_proc10_evt_loop terminating... [2023-03-02 18:40:59,384][1045770] Stopping RolloutWorker_w21... [2023-03-02 18:40:59,384][1045670] Stopping RolloutWorker_w16... [2023-03-02 18:40:59,384][1045706] Stopping RolloutWorker_w19... [2023-03-02 18:40:59,384][1045503] Stopping RolloutWorker_w3... [2023-03-02 18:40:59,384][1045667] Stopping RolloutWorker_w13... [2023-03-02 18:40:59,384][1045504] Stopping RolloutWorker_w4... [2023-03-02 18:40:59,384][1045738] Stopping RolloutWorker_w20... [2023-03-02 18:40:59,385][1045666] Loop rollout_proc8_evt_loop terminating... [2023-03-02 18:40:59,384][1045930] Stopping RolloutWorker_w26... [2023-03-02 18:40:59,384][1045665] Stopping RolloutWorker_w9... [2023-03-02 18:40:59,384][1045929] Stopping RolloutWorker_w24... [2023-03-02 18:40:59,385][1045834] Loop rollout_proc22_evt_loop terminating... [2023-03-02 18:40:59,385][1045933] Loop rollout_proc27_evt_loop terminating... [2023-03-02 18:40:59,384][1045997] Stopping RolloutWorker_w30... [2023-03-02 18:40:59,384][1045180] Runner profile tree view: main_loop: 517.0250 [2023-03-02 18:40:59,384][1045578] Stopping RolloutWorker_w7... [2023-03-02 18:40:59,384][1045705] Stopping RolloutWorker_w15... [2023-03-02 18:40:59,385][1045770] Loop rollout_proc21_evt_loop terminating... [2023-03-02 18:40:59,385][1045932] Loop rollout_proc28_evt_loop terminating... [2023-03-02 18:40:59,385][1045706] Loop rollout_proc19_evt_loop terminating... [2023-03-02 18:40:59,385][1045503] Loop rollout_proc3_evt_loop terminating... [2023-03-02 18:40:59,384][1045502] Stopping RolloutWorker_w2... [2023-03-02 18:40:59,385][1045897] Stopping RolloutWorker_w23... [2023-03-02 18:40:59,384][1045998] Stopping RolloutWorker_w25... [2023-03-02 18:40:59,385][1045669] Loop rollout_proc17_evt_loop terminating... [2023-03-02 18:40:59,385][1045670] Loop rollout_proc16_evt_loop terminating... [2023-03-02 18:40:59,385][1045667] Loop rollout_proc13_evt_loop terminating... [2023-03-02 18:40:59,385][1045930] Loop rollout_proc26_evt_loop terminating... [2023-03-02 18:40:59,385][1045929] Loop rollout_proc24_evt_loop terminating... [2023-03-02 18:40:59,385][1045997] Loop rollout_proc30_evt_loop terminating... [2023-03-02 18:40:59,385][1045180] Collected {0: 7905280}, FPS: 12123.0 [2023-03-02 18:40:59,385][1045578] Loop rollout_proc7_evt_loop terminating... [2023-03-02 18:40:59,385][1045665] Loop rollout_proc9_evt_loop terminating... [2023-03-02 18:40:59,385][1046030] Stopping RolloutWorker_w31... [2023-03-02 18:40:59,384][1045671] Stopping RolloutWorker_w18... [2023-03-02 18:40:59,385][1045897] Loop rollout_proc23_evt_loop terminating... [2023-03-02 18:40:59,385][1045504] Loop rollout_proc4_evt_loop terminating... [2023-03-02 18:40:59,385][1045705] Loop rollout_proc15_evt_loop terminating... [2023-03-02 18:40:59,385][1045501] Stopping RolloutWorker_w1... [2023-03-02 18:40:59,385][1045738] Loop rollout_proc20_evt_loop terminating... [2023-03-02 18:40:59,385][1045664] Stopping RolloutWorker_w11... [2023-03-02 18:40:59,385][1045502] Loop rollout_proc2_evt_loop terminating... [2023-03-02 18:40:59,385][1045998] Loop rollout_proc25_evt_loop terminating... [2023-03-02 18:40:59,385][1045501] Loop rollout_proc1_evt_loop terminating... [2023-03-02 18:40:59,385][1045671] Loop rollout_proc18_evt_loop terminating... [2023-03-02 18:40:59,385][1045664] Loop rollout_proc11_evt_loop terminating... [2023-03-02 18:40:59,385][1045668] Stopping RolloutWorker_w12... [2023-03-02 18:40:59,385][1046030] Loop rollout_proc31_evt_loop terminating... [2023-03-02 18:40:59,386][1045668] Loop rollout_proc12_evt_loop terminating... [2023-03-02 18:40:59,386][1045965] Stopping RolloutWorker_w29... [2023-03-02 18:40:59,389][1045965] Loop rollout_proc29_evt_loop terminating... [2023-03-02 18:40:59,390][1045505] Stopping RolloutWorker_w5... [2023-03-02 18:40:59,391][1045505] Loop rollout_proc5_evt_loop terminating... [2023-03-02 18:40:59,399][1045507] Stopping RolloutWorker_w6... [2023-03-02 18:40:59,400][1045507] Loop rollout_proc6_evt_loop terminating... [2023-03-02 18:40:59,400][1045448] Stopping Batcher_0... [2023-03-02 18:40:59,401][1045448] Loop batcher_evt_loop terminating... [2023-03-02 18:40:59,401][1045500] Stopping RolloutWorker_w0... [2023-03-02 18:40:59,402][1045500] Loop rollout_proc0_evt_loop terminating... [2023-03-02 18:40:59,406][1045673] Stopping RolloutWorker_w14... [2023-03-02 18:40:59,407][1045673] Loop rollout_proc14_evt_loop terminating... [2023-03-02 18:40:59,423][1045448] Saving /home/qgallouedec/train_dir/default_experiment/checkpoint_p0/checkpoint_000007721_7906304.pth... [2023-03-02 18:40:59,452][1045499] Weights refcount: 2 0 [2023-03-02 18:40:59,454][1045499] Stopping InferenceWorker_p0-w0... [2023-03-02 18:40:59,454][1045499] Loop inference_proc0-0_evt_loop terminating... [2023-03-02 18:40:59,537][1045448] Removing /home/qgallouedec/train_dir/default_experiment/checkpoint_p0/checkpoint_000005790_5928960.pth [2023-03-02 18:40:59,545][1045448] Stopping LearnerWorker_p0... [2023-03-02 18:40:59,545][1045448] Loop learner_proc0_evt_loop terminating... |